加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 趋势一:人工智能在工程和科学学科、整个行业和学术界广泛普及
    • 趋势二:AI将工程、计算机科学、数据科学和IT部署整合起来
    • 趋势三:模型可解释性有助于增强在安全关键系统中使用人工智能的信心
    • 趋势四:仿真和测试将迈入三维时代且更加逼真
    • 趋势五:将有更多的AI模型部署到更多低功耗、低成本的嵌入式设备中
    • 趋势六:人工智能帮助应对全球挑战
    • 趋势七:以数据为中心的人工智能
    • 趋势八:无代码/低代码/自动编码:为扩大AI用户群体带来巨大好处
    • 趋势九:AI驱动跨框架、跨平台和多学科团队之间的协作
    • 趋势十:人工智能大量用于应用科学研究
    • MathWorks在企业人工智能工程领域的进展?
    • 降阶模型和边缘AI趋势
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

展望:2022年十大人工智能趋势

2022/04/18
1028
阅读需 13 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

在Gartner的《数据科学和机器学习平台魔力象限》报告中,MathWorks连续两年都被评为年度领导者。该报告主要针对全球有影响力的机器学习、人工智能平台进行评估,MathWorks 作为数学计算软件开发商,主要有MATLAB 和Simulink两大类产品平台。MATLAB 被称为“科学家和工程师的语言”,是一个集算法开发、数据分析、可视化和数值计算于一体的编程环境;Simulink 则是一个模块化建模环境,面向多域和嵌入式工程系统的仿真和基于模型的设计。目前,这两类产品平台被广泛用于军工、航空、航天、半导体等20几个行业,用于人工智能、大数据处理、仿真设计等工作。

作为全球领先的数学计算软件开发商,2020年起每年追踪并发布全球人工智能发展趋势,已经成为MathWorks的惯例。日前,MathWorks最新发布了对2022年以后的十大人工智能趋势预测,MathWorks中国区行业市场经理李靖远(Jason)接受了<与非网>等媒体采访。

趋势一:人工智能在工程和科学学科、整个行业和学术界广泛普及

尽管落地应用、发展现状有一定区别,但人工智能确实已经在很多行业蓬勃发展。在智能家居自动驾驶机器人网络安全、医疗设备等新兴行业中,得益于良好的数字化技术基础,人工智能的发展和落地较为领先。在数字化基础相对落后一些的传统行业,例如电力、化工等领域,人工智能、大数据、数字化的普及与转型可以说正处在起步阶段,还需要大量的数字化积累。

趋势二:AI将工程、计算机科学、数据科学和IT部署整合起来

人工智能可以将工程、计算科学、数字科学和IT部署联合起来,而之前这些是彼此相对独立的。包括传统意义所指的开发流程、部署流程和企业运营流程,它们将通过人工智能、无代码、低代码等趋势紧密结合在一起,形成有机整体。低代码、无代码的工具在进行建模仿真之后,可以自动地生成代码,然后再部署到CPU/MCU/GPU/FPGA等多种类型的边缘设备之上。

趋势三:模型可解释性有助于增强在安全关键系统中使用人工智能的信心

在航空航天、军工等安全关键领域中,对于机械模型设计、虚拟仿真技术的要求,是所涉及到的模型必须具备清晰的可解释性,才会导入应用。但一直以来,人工智能通过机器学习、深度学习等算法生成的模型,在可解释性方面不如直接建模清晰,被视作一种黑盒式的系统建模方法。随着人工智能的发展,模型的可解释性也在不断提高,也将在更多的注重高安全的关键领域得以应用。

趋势四:仿真和测试将迈入三维时代且更加逼真

仿真和测试不只是局限于自动驾驶、机器人、虚拟现实等环节,甚至医疗行业等应用场景中,人工智能会推动更多的3D仿真和测试技术的应用,使得场景更加真实、可靠、具体。

趋势五:将有更多的AI模型部署到更多低功耗、低成本的嵌入式设备中

将有更多的人工智能模型部署到更低功耗、更低成本的系统设备中。日常生活中,大到飞机、汽车,小到家用电器,都内置着大量的嵌入式系统。在2014年前后,大部分的人工智能算法都需要基于GPU甚至GPU集群进行训练,受限于硬件算力,之前部署到这些设备上较为困难。但是随着越来越多的方法可以将AI整合到更多边缘系统,从FPGA到MCU,更多低成本、低功耗设备得到了广泛的硬件支持,并为工程师所用。

借助量化和剪枝等方法减小要部署的模型,并采用深度学习社区提供的高效预训练模型,可以实现AI的高效部署,并能够让基于AI的系统在今后得到更为广泛的应用。

趋势六:人工智能帮助应对全球挑战

不论是传染病大流行还是气候变化,还有能源问题、包括碳中和方向,人工智能都在帮助人类应对全球挑战。越来越多的科学家在使用MATLAB数据处理和AI算法分析新冠病毒的流行趋势,对大气进行长期的空气质量监测,利用数据分析大气的气候变化等等。

趋势七:以数据为中心的人工智能

以往的很多人工智能应用专注于模型和算法本身,但从2019年开始,相关研究方向开始专注于改善提供给模型和数据管理系统的数据,也就是说要给予模型更好更优的算法、更优的数据,数据的优化代表着能产生更优秀的模型。

趋势八:无代码/低代码/自动编码:为扩大AI用户群体带来巨大好处

无代码、低代码和自动编码等应用,为AI的普及带来助推力。传统的行业领域有很多专家,不过他们的经验往往集中于自己的垂直领域。如何让他们快速将人工智能算法与自身擅长的领域相结合?无代码和低代码就起到了关键作用,利用MathWorks所提供的深度学习、机器学习,包括强化学习工具箱,专家们就算并不擅长编程,也能很快地掌握无代码/低代码的人工智能学习方案。

趋势九:AI驱动跨框架、跨平台和多学科团队之间的协作

目前AI框架类型较多,比如Tensorflow、PyTorch、Keras、Caffe等,这些框架各自专注的领域往往不同,没有任何一个框架可以解决所有问题,因此跨框架的协同和互操作非常重要。MathWorks通过以MATLAB/Simulink为基础平台,将其他框架中的算法导入MATLAB/Simulink中,使之成为整个大系统仿真的一部分,以此来促进不同学科之间的交流,以及整个平台系统级的仿真。

趋势十:人工智能大量用于应用科学研究

从人工智能的发展趋势来看,应用学科越来越成为新的热点应用。例如迁移学习使研究人员更容易在工作中应用人工智能,他们只需在实际应用中对训练好的模型进行一定幅度的微调,就可以快速地部署在实际场景中。此外,研究人员利用GAN等技术生成对抗网络,以及通过PIML促进机器学习和物理知识的融合等,都是新技术在应用学科研究方向的案例。

MathWorks在企业人工智能工程领域的进展?

海量大中小型企业是人工智能应用的积极实践者,特别是对于那些具有一定规模和行业地位的企业,已经走在了应用前列。显然,针对这些用户的工具、服务等,都非常重要。

在MathWorks官网上,仅使用MATLAB AI解决工程问题的案例就超过了100个。MathWorks提供的机器学习和深度学习工具箱,也已经渗透到各类企业行业应用的方方面面,例如日本Daihatsu公司分析汽车发动机产生爆震的原因;三星公司研究降低无线通信电路的噪音;韩国能源研究所对风机,尤其是海上风机进行故障监测……

针对企业级部署需求,MathWorks在开发侧推出了MATLAB Production Server和Web App Server,配合海量数据处理、无代码/低代码建模系统软件、自动化代码生成,能够帮助运维人员将算法快速部署在企业IT/OT系统中,做到开发和运营一体化部署。

对于现阶段的AI应用来说,数据仍是重中之重。除了数据的获取,对不同数据类型的分类、标注,对于下一阶段的处理应用非常关键。如果能够自动为数据标注标签,之后再对其进行训练、调优以及可视化,不仅能够提高工作效率,对于更精准的训练、应用都大有裨益。

MathWorks在这方面提供了完整的AI工具链,除了“打标签”,还包括对采集到的数据进行预处理,例如通过算法拟合补充丢失的数据,过滤“脏”数据等等,之后再进行人工智能的建模、仿真、测试和部署。据李靖远介绍,企业级AI应用比较复杂,因此跨平台、跨框架的支持必不可少,为了方便在各个平台中互相调用,增强互操作性。MATLAB还针对几种主流框架提供了导入器工具,Tensorflow、Keras、 Caffe、Pytorch等框架中的模型可以通过导入器自动进入MATLAB中,形成系统级仿真。

降阶模型和边缘AI趋势

李靖远强调了一个重要趋势:今后将使用一些降阶模型去替代高保真仿真模型,来加速仿真速度。由于很多非线性系统,包括流体力学中的多维系统,在实际仿真过程中需要的并不是高保真仿真模型,而是整个系统模型的输入、输出要尽量接近真实。此时,就可以用降阶模型作为系统的一部分来加快仿真速度。

不过,目前一些降阶技术还是需要结合具体的系统来实现最适合的方案,并不是对所有系统都具备普适性。据李靖远介绍,目前降阶模型的主要适用场景:一是针对非线性模型,传统意义上很难找到其中的规律,就可以用人工智能训练出来的降阶模型来替代它;二是在仿真过程中,理想模型与降阶模型的吻合度相对比较高,就可以用降阶模型替代实际模型进行仿真。当然,这主要是为了提高仿真速度,在仿真效果和仿真速度之间取得的折中平衡,并不适用于所有系统。如果追求高保真的仿真效果,降阶模型是不适用的。

针对边缘AI的应用趋势,李靖远表示,现实中有庞大的边缘系统需求,涉及航空航天、汽车、工业、通信、家电、医疗、能源、可穿戴设备、手机、电子手表等等,边缘AI未来的需求一定是巨大的。

但与此同时,边缘AI的落地部署仍有三大制约因素:第一是硬件效率的制约,受限于硬件算力、算法效率等原因,一些比较复杂的算法还是不太适合部署在边缘设备上。第二是AI算法代码的精炼度,AI算法生成模型,最后代码是要部署在边缘设备上,代码的精炼度可能对边缘设备的部署有一定影响。第三是AI的产品化,AI算法如何能够适用于更多的通用场景、部署在更多的边缘设备,也是一个制约因素。要提高通用性,势必要增加代码,对算力的要求会更高,因此会对部署产生一定的制约。

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
CRCW06030000ZSTA 1 Vishay Intertechnologies Fixed Resistor, Metal Glaze/thick Film, 0.1W, 0ohm, Surface Mount, 0603, CHIP, HALOGEN FREE

ECAD模型

下载ECAD模型
$0.17 查看
0510210600 1 Molex Board Connector, 6 Contact(s), 1 Row(s), Female, Straight, Crimp Terminal, Receptacle, ROHS COMPLIANT
$0.77 查看
C3216X5R1A107M160AC 1 TDK Corporation Ceramic Capacitor, Multilayer, Ceramic, 10V, 20% +Tol, 20% -Tol, X5R, 15% TC, 100uF, Surface Mount, 1206, CHIP, ROHS COMPLIANT

ECAD模型

下载ECAD模型
$1.47 查看
Mathworks

Mathworks

MathWorks是为工程师和科学家提供数学计算和基于模型的设计的软件开发商和供应商,总部位于美国马萨诸塞州纳蒂克(Natick)。MathWorks拥有5000多名员工,在全球拥有33个办公地点,公司开发的MATLAB和Simulink在计算生物学、芯片设计、控制系统、图像处理与计算机视觉、数据科学、物联网、机器人、机器学习、信号处理、无线通信等领域均有广泛应用。

MathWorks是为工程师和科学家提供数学计算和基于模型的设计的软件开发商和供应商,总部位于美国马萨诸塞州纳蒂克(Natick)。MathWorks拥有5000多名员工,在全球拥有33个办公地点,公司开发的MATLAB和Simulink在计算生物学、芯片设计、控制系统、图像处理与计算机视觉、数据科学、物联网、机器人、机器学习、信号处理、无线通信等领域均有广泛应用。收起

查看更多

相关推荐

电子产业图谱

与非网资深行业分析师。主要关注人工智能、智能消费电子等领域。电子科技领域专业媒体十余载,善于纵深洞悉行业趋势。欢迎交流~