加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 功率器件的输出电流能力
    • 功率端子和引线损耗
    • 功率端子的散热
    • 案例分析
  • 相关推荐
申请入驻 产业图谱

功率器件热设计基础(十一)——功率半导体器件的功率端子

01/07 11:05
194
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

/ 前言 /

功率半导体热设计是实现IGBT碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。

功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。

功率器件的输出电流能力

器件的输出电流能力首先是由芯片决定的,但是IGBT芯片的关断电流能力很强,在单管里是标称电流的3倍或4倍,模块由于考虑多芯片并联等因素,关断电流能力定义为标称电流的2倍。

在实际系统设计中,器件输出电流能力往往受限于芯片的散热,在器件设计中也有可能受限端子,这可以从封装中的大电流规格器件中看出,其电流受绑定线(引线)的限制。

如IKQ150N65EH7,一个TO-247封装的150A 650V单管,其集电极直流电流在Tc=25℃时和Tc=100℃一致,都是160A,限制是引线。

摘自IKQ150N65EH7数据手册

再看一个900A 1200V的EconoDUAL™3模块,其关断电流能力可以到1800A。这样如果芯片温度不超过Tvjmax,输出有效值电流是1289A,但受功率端子限制,ITRMS=580A。

摘自FF900R12ME7_B11数据手册

参考《功率半导体冷知识之二:IGBT短路时的损耗》

功率端子和引线损耗

功率端子的温升取决于器件引线的损耗,现代逆变器设计必须考虑到IGBT模块引线中的功率损耗。这是由于半导体的芯片技术的进步,总损耗随着电流密度的增加而不断降低,相同封装可以放电流规格更大的芯片,端子损耗就必须考虑。

模块引线电阻,即端子到芯片的电阻值RCC’+EE’,会造成的损耗,其在数据手册中标出,对于中大功率模块是个不小的数值。

EconoDUAL™3 FF900R12ME7模块引线电阻,端子到芯片的电阻值0.8mΩ,900A时压降0.72V,在900A时,功耗高达648W,这是不能接受的,所以在数据手册中规定的端子的输出电流ITRMS=580A,这时损耗大约在250W。

FF900R12ME7电流和引线损耗

如果选择PrimePACK™封装,其最大规格做到了2400A半桥,这样的模块引线电阻小很多,原因是端子采用铜排结构。FF900R12IE4,900A 1200V模块端子到芯片的电阻值0.3mΩ,900A时压降0.27V,功耗仅243W,只有EconoDUAL™3 FF900R12ME7的38%。

功率端子的散热

功率端子和引线的功率损耗不可小觑,散热是必要的。

功率端子的热模型如下图,热量从温度为Tmax的系统最热点出发,其有两条散热路径,一是通过功率端子到母排向空间散热,路径上热阻有RthTB功率端子到母排的热阻,RthBA母排到环境的热阻。二是通过DCB、金属基板到散热器的,路径上热阻有RthSC功率端子到管壳的热阻,由功率端子的几何形状、连接技术和与DCB绝缘陶瓷衬底决定,RthCH管壳到散热器的热阻,由导热脂和金属基板热量扩散决定。功率端子分享了芯片的散热路径,是并联关系,请参阅《功率器件的热设计基础(二)---热阻的串联和并联》

图1.功率端子的热流

案例分析

模块的功率端子:

对于大电流的模块,降低功率端子的损耗也是设计的重要目标,而且比降低芯片损耗要相对容易。以英飞凌最大电流规格的模块为例,它们是3600A 1700V,IHM A封装(图2左)和IHM B(图2右)的IGBT模块。

图2.两种不同的功率端子

它们在功率端子设计上的区别为,IHM A的端子通过焊点与DCB连接,并在主平面上有一个用于机械去耦外力的缓冲。改进后的IHM B中取消了蜿蜒曲折缓冲结构的设计,引入了用于机械解耦的弯曲设计。这将降低端子电阻,从而减小温度梯度。此外,通过增加端子与DCB之间的接触面降低RthSC。

另一个不同之处是安装孔,IHM A安装孔是腰圆孔,而IHM B由于端子精度高,可以直接用圆孔,为母线提供了更大的接触面。功率端子的电阻从0.22mΩ降低了0.11mΩ,损耗占比从5.8%降到了2.9%。热阻RthSC从0.35K/W降低到了0.07K/W,Tmax从105°C降至94°C(1。图2也显示了在相同条件下两种设计的温度分布。

从端子到散热器和母排的热流

在应用中,损耗热量PT在模块电源端子中产生,损耗热量PB在母排中产生。热流如图1所示。功率端子的损耗热流PTH通过RthSC和RthCH从温度为TS的端子流向温度为TH的散热器。母排的损耗热量PBA从温度为TB的母线流向温度为TA的环境空气,热阻为RthBA。

关键在于,总损耗热量PTB也会通过热阻RthTB在端子和母线之间进行交换,这取决于母线连接的质量。

下图是HE3模块端子在特定母排下的测得热阻进行得分析,为了使计算线性化,假定电阻和所有热阻与温度无关。条件是I=440A和TH=80°C,环境温度TA变化。

不出所料,系统中最热的点是功率端子,TA=70°C时温度升至TT=132°C。母排达TB=102°C。(案例省略了实验的配置,数值只供定性参考)

在室温下,大部分热量会通过母排散发到环境空气中,但当环境空气的温度达到散热器的温度时,母排就不再有散热作用了。

本文利用数据手册上的值分析的功率端子和引线的损耗,无论是单管还是模块在大电流下损耗和发热不能小觑。

在系统设计中,母排也是很好的散热通路,文章中只对某个实验做了解读,只能做定性参考。

系列文章

功率器件的热设计基础(一)---功率半导体的热阻

功率器件的热设计基础(二)---热阻的串联和并联

功率器件热设计基础(三)----功率半导体壳温和散热器温度定义和测试方法

功率器件热设计基础(四)——功率半导体芯片温度和测试方法

功率器件热设计基础(五)——功率半导体热容

功率器件热设计基础(六)——瞬态热测量

功率器件热设计基础(七)——热等效模型

功率器件热设计基础(八)——利用瞬态热阻计算二极管浪涌电流

功率器件热设计基础(九)——功率半导体模块的热扩散

功率器件热设计基础(十)——功率半导体器件的结构函数

英飞凌

英飞凌

英飞凌科技股份公司是全球功率系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约58,600名员工,在2023财年(截至9月30日)的营收约为163亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。 更多信息,请访问www.infineon.com

英飞凌科技股份公司是全球功率系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约58,600名员工,在2023财年(截至9月30日)的营收约为163亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。 更多信息,请访问www.infineon.com收起

查看更多

相关推荐

登录即可解锁
  • 海量技术文章
  • 设计资源下载
  • 产业链客户资源
  • 写文章/发需求
立即登录

英飞凌科技股份公司是全球功率系统和物联网领域的半导体领导者。英飞凌以其产品和解决方案推动低碳化和数字化进程。该公司在全球拥有约58,600名员工,在2023财年(截至9月30日)的营收约为163亿欧元。英飞凌在法兰克福证券交易所上市(股票代码:IFX),在美国的OTCQX国际场外交易市场上市(股票代码:IFNNY)。 更多信息,请访问www.infineon.com