加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

OBC 充电器中的 SiC FET 封装小巧,功能强大

2023/03/23
33
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论
Mike Zhu,Qorvo 高级产品应用工程师
 
Qorvo MOSFET SiC SiC FET
 
EV 车载充电器和表贴器件中的半导体电源开关在使用 SiC FET 时,可实现高达数万瓦特的功率。我们将了解一些性能指标。
 
引言
 
在功率水平为 22kW 及以上的所有级别电动汽车 (EV) 车载充电器半导体开关领域,碳化硅 (SiC) MOSFET 占据明显的优势。UnitedSiC(如今为 Qorvo)SiC FET 具有独特的 Si MOSFET 和 SiC JFET 级联结构,其效率高于 IGBT,且比超结 MOSFET 更具吸引力。不过,这不仅关乎转换系统的整体损耗。对于 EV 车主来说,成本、尺寸和重量也是很重要的因素。
 
设计人员可以选择在 EV 车载充电器中使用不同封装类型的半导体电源开关,包括使用 SiC FET 时,可实现高达数万瓦特功率的表贴器件。在本博客文章中,我们将探讨 SiC FET 的一些性能指标。
 
Qorvo MOSFET SiC SiC FET
 
更多 SiC FET 请关注 Qorvo Power 微信公众号
 
OBC 充电器中的 SiC FET
 
在 EV 的典型功率水平下,即使效率超过 98%,车载充电器在高温环境下也需要耗散数百瓦特的电量。因此,我们需要进行散热,并通常采用液体冷却实现。如何将开关连接至该散热装置,优化热传递、提高良品率和降低装配成本,是一个主要的设计考虑因素。SiC FET 通常采用具有出色热性能(结点到冷却液的热阻约为1.0°C/W)的 TO-247-4L 封装,同时使用 UnitedSiC(如今为 Qorvo)的晶圆减薄技术、银烧结芯片和陶瓷隔离器焊盘。然而,TO-247-4L 封装也存在缺点,它需要进行机械固定和通孔焊接。该封装还具有显著的封装电感和受限的爬电距离,其引脚之间还存在一定间隙。此外,该封装的 PCB 焊盘间距较小,除非导线采用复杂且成本较高的方式进行  “啮合”。
 
Qorvo MOSFET SiC SiC FET
表 1:D2PAK-7L 和 TO-247-4L 进行比较。
 
表贴替代产品看似具有吸引力,但在 22kW 功率水平下如何?实际上,使用 UnitedSiC(如今的 Qorvo)D2PAK-7L 器件是可行的,对性能几乎没有影响,具体取决于功率转换级。通过查看上述表 1 中封装类型之间的主要差异,我们可以了解到,除了芯片安装面积之外,D2PAK-7L 在其他方面均优于 TO-247-4L。对于焊接在绝缘金属基板上的 18 毫欧器件,D2PAK-7L 的芯片安装面积导致其结点到冷却液的整体热阻约为 1.3℃/W,相比于 TO-247-4L 封装,高 30% 左右。
 
在功耗给定且其他条件相同的情况下,热阻越高,结温就越高,但由于使用SMT 器件可以节省大量组装空间,可能还可以使用电阻更低的部件,这样就可以降低温度。但是,如果只使用一个 SMT 器件来满足热限制要求,Tj 就会变得非常高,所以将 SMT 器件并联是一个可行的解决方案。如果使用两个并联的 SMT 器件来取代一个 SMT 器件,那么对于两个并联 SMT 器件中每个器件的导通电阻,都是仅用一个 SMT 器件时的两倍。在这种情况下,两个并联器件中每个器件的电流都会减半,但导通电阻却会翻倍,所以功耗就是使用单个器件的一半。由于导通电阻减半,两个并联 SMT 器件的总功耗会略低于仅用一个 SMT 器件的功耗。从热学角度来看,每个器件的温度都会更低,因为当采用相同的热管理指标时(结点到环境或冷却液的热阻),每个并联器件的功耗仅为使用单个 SMT 器件时功耗的一半。理论上,每个并联 SMT 器件的温升(从环境或冷却液到结点)应为使用单个 SMT 器件时的一半。除此之外,D2PAK-7L 的封装电感更低,因此可实现更高的开关边缘速率,甚至更低的动态损耗。
 
使用 UnitedSiC 在线 FET-Jet Calculator™ 比较典型车载充电器在不同级的封装性能,则非常有益。“图腾柱 PFC” 级比较常见,例如在额定 6.6kW、400V 输出、75kHz、连续导通模式 (CCM) 散热/冷却液温度为 80℃ 的情况下,对一系列 TO-247-4L 和 D2PAK-7L SiC FET 的“快速开关”支路进行评估。经过评估,我们发现这两种封装的结温差在 3℃ 至 8℃ 之间,具体取决于导通电阻的等级。
 
Qorvo MOSFET SiC SiC FET
图 1:图示为 Vienna 整流器前端。
 
在功率更高且使用三相交流电源的情况下,“Vienna 整流器” 可在 40kHz 下与 800V 直流链路一起使用(图 1)。可以使用 750V SiC FET,如果再次比较 18 毫欧 TO-247-4L 和 D2PAK-7L 部件,我们发现,当 “半导体” 效率差异为 0.1% 时,两者的结温差只有 3℃。在这种应用中,高导通电阻部件不可避免地表现出更大的差异,且单个器件会出现不可行的温升,但如果在 22kW 功率条件下使用高价值产品,低电阻部件的成本相对于所获得的收益来说则并不是太大的开销。
 
D2PAK-7L 在直流/直流功率转换级可有效地取代 TO-247-4L
 
刚刚讨论的图腾柱 PFC 级和 Vienna 整流器级为 “硬” 开关,且频率保持在相对较低的范围,以便最大限度地减少动态损耗。OBC 中的直流/直流转换级可以是谐振或 “软” 开关转换器,比如频率更高的 CLLC 拓扑,可实现较小的磁性元件和较低的损耗,通常为 300kHz。例如,在 6.6kW 400V 直流链路和使用 18 毫欧 SiC FET 的情况下,根据 FET-Jet Calculator™ 的计算结果,TO-247-4L 和 D2PAK-7L 的单个器件损耗分别为 4.1W 和 4.2W,且由于 SMT 封装具有更低的电感,所以在使用更高频率时,理应选择该封装。
 
考虑系统总成本,且温升或系统效率差异极小或不存在差异时(尤其是考虑到并联的电气和机械便利性的情况下),从 TO-247-4L 封装变更为 SMT D2PAK-7L 封装是顺理成章的选择。作为 SMT 器件,SiC FET 具有出色的品质因素 (FoM) 和简单的栅极驱动,逐渐成为 EV 车载充电器应用的理想开关之选。
 
表贴替代产品看似具有吸引力,但在22kW 功率水平下如何?实际上,……
 
Qorvo MOSFET SiC SiC FET
Qorvo MOSFET SiC SiC FET
 
结论
 
SiC FET 的标准额定电压为 1700V,且效率比 IGBT 更高,因此比超结 MOSFET 更具吸引力,并在各级 EV 车载充电领域占据明显的优势。虽然 SiC FET 可在 TO-247-4L 封装内提供出色的热性能,但其缺点是需要进行机械固定和通孔焊接。所以,当考虑系统总成本,且对温升或效率影响极小或不存在影响时,选择使用 SMT 器件(如 UnitedSiC D2PAK-7L 封装)则是一种合理的自然发展现象。这些 SMT SiC FET 不仅可以为设计人员节省大量的电路装配费用,还可以提供一流的 FoM 和简单易用的栅极驱动解决方案,因此是 EV 车载充电器的理想开关之选。
 
下载电子书《汽车的未来设计指南》
 
 
Qorvo MOSFET SiC SiC FET
 
文章为原创,转载请注明原网址:https://rf.eefocus.com/article/id-336773
QORVO

QORVO

Qorvo(纳斯达克代码:QRVO)提供各种创新半导体解决方案,致力于让我们的世界更美好。我们结合产品和领先的技术优势、以系统级专业知识和全球性的制造规模,快速解决客户最复杂的技术难题。Qorvo 面向全球多个快速增长的细分市场提供解决方案,包括消费电子、智能家居/物联网、汽车、电动汽车、电池供电设备、网络基础设施、医疗保健和航空航天/国防。访问 www.qorvo.com,了解我们多元化的创新团队如何连接地球万物,提供无微不至的保护和源源不断的动力。

Qorvo(纳斯达克代码:QRVO)提供各种创新半导体解决方案,致力于让我们的世界更美好。我们结合产品和领先的技术优势、以系统级专业知识和全球性的制造规模,快速解决客户最复杂的技术难题。Qorvo 面向全球多个快速增长的细分市场提供解决方案,包括消费电子、智能家居/物联网、汽车、电动汽车、电池供电设备、网络基础设施、医疗保健和航空航天/国防。访问 www.qorvo.com,了解我们多元化的创新团队如何连接地球万物,提供无微不至的保护和源源不断的动力。收起

查看更多

相关推荐

电子产业图谱