加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 推荐器件
  • 相关推荐
申请入驻 产业图谱

如何为逐次逼近型ADC设计可靠的数字接口?

2023/07/21
2203
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

逐次逼近型模数转换器(因其逐次逼近型寄存器而称为SAR ADC)广泛运用于要求最高18 位分辨率和最高5 MSPS 速率的应用中。其优势包括尺寸小、功耗低、无流水线延迟和易用。

主机处理器可以通过多种串行和并行接口(如SPII2CLVDS)访问或控制ADC。本文将讨论打造可靠、完整数字接口的设计技术,包括数字电源电平和序列、启动期间的I/O 状态、接口时序、信号质量以及数字活动导致的误差。

数字I/O 电源电平和序列

多数SAR ADC 都提供独立的数字I/O 电源输入(VIO 或 VDRIVEVDRIVE),后者决定接口的工作电压和逻辑兼容性。此引脚应与主机接口(MCUDSPFPGA)电源具有相同的电压。数字输入一般应在DGND − 0.3 V与 VIO+ 0.3 V 之间,以避免违反绝对最大额定值。须在 VIO引脚与DGND 之间连接走线短的去耦电容

采用多个电源的ADC 可能拥有明确的上电序列。应用笔记AN-932 电源时序控制为这些ADC 电源的设计提供了良好的参考。为了避免正向偏置ESD 二极管,避免数字内核加电时处于未知状态,要在接口电路前打开I/O 电源。模拟电源通常在I/O电源之前加电,但并非所有ADC 均是如此。请参阅并遵循数据手册中的内容,确保序列正确。

启动期间的数字I/O 状态

为了确保初始化正确无误,有些SAR ADC 要求处于某些逻辑状态或序列,以实现复位、待机或关断等数字功能。在所有电源都稳定之后,应施加指定脉冲或组合,以确保ADC 启动时的状态符合预期。例如,一个高脉冲在RESET 上持续至少50 ns,这是配置AD7606 以使其在上电后能正常运行所必须具备的条件。

在所有电源均完全建立之前,不得切换数字引脚。对于SARADC,转换开始引脚CNVST 可能对噪声敏感。在图1 所示示例中,当AVCC、DVCC 和VDRIVE 仍在上升时,主机cPLD 拉高CNVST。这可能使 AD7367 进入未知状态,因此,在电源完全建立之前,主机应使 CNVST 保持低电平。

图1. 在电源上升时拉高 CNVST 可能导致未知状态。

数字接口时序

转换完成之后,主机可以通过串行或并行接口读取数据。为了正确读取数据,须遵循特定的时序策略,比如,SPI总线需要采用哪种模式等。不得违反数字接口时序规范,尤其是ADC
和主机的建立和保持时间。最大比特率取决于整个循环,而不仅仅是最小额定时钟周期。图2和下列等式展示了如何计算建立和保持时间裕量。主机把时钟发送至ADC 并读取ADC 输出的数据。

图2. 建立和保持时序裕量。

tCYCLE = tJITTER + tSETUP + tPROP_DATA + tPROP_CLK + tDRV + tMARGIN

tCYCLE : 时钟周期 = 1/fCLOCK

tJITTER: 时钟抖动

tSETUP: 主机建立时间

tHOLD: 主机保持时间

tPROP_DATA: 从ADC 到主机的传输线路的数据传播延迟

tPROP_CLK: 从主机到ADC 的传输线路的数据传播延迟

tDRV: 时钟上升/下降沿后的数据输出有效时间

tMARGIN: 裕量时间大于等于0 表示达到建立时间或保持时间要求,小于0 表示未达到建立时间或保持时间要求。

主机建立时间裕量

tMARGIN_SETUP = tCYCLE, min – tJITTER – tSETUP – tPROP_DATA – tPROP_CLK – tDRV, MAX

建立时间等式以最大系统延迟项定义最小时钟周期时间或最大频率。要达到时序规格,必须大于等于0。提高周期(降低时钟频率)以解决系统延迟过大问题。对于缓冲器电平转换器隔离器或总线上的其他额外元件,把额外延迟加入tPROP_CLK 和 tPROP_DATA.

类似地,主机的保持时间裕量为

tMARGIN_HOLD = tPROP_DATA + tPROP_CLK + tDRV – tJITTER – tHOLD

保持时间等式规定了最小系统延迟要求,以避免因违反保持时间要求而出现逻辑错误。要达到时序规格,必须大于等于0。

ADI 公司带SPI 接口的许多SAR ADC 都是从 CS 或 CNV的下降沿为MSB 提供时钟信号,剩余的数据位则跟随SCLK 的下降沿,如图3 所示。在读取MSB 数据时,要使用等式中的tEN而非tDRV .

图3. AD7980 3 线 CS 模式下的SPI 时序。

因此,除了最大时钟速率以外,数字接口的最大工作速率也取决于建立时间、保持时间、数据输出有效时间、传播延迟和时钟抖动。

在图4 中,DSP 主机访问AD7980处于3 线CS模式下,其中,VIO = 3.3 V。DSP 锁存SCLK 下降沿上的SDO 信号。DSP的额定最小建立时间为5 ns,最小保持时间为2 ns。对于典型的FR-4PCB 板,传播延迟约为180 ps/in。缓冲器的传播延迟为5 ns。CNV、SCLK 和SDO 的总传播延迟为

tprop = 180 ps/in × (9 in + 3 in) + 5 ns = 7 ns.

tJITTER = 1 ns. 主机SCLK 的工作频率为30 MHz,因此,tCYCLE = 33 ns.

tSETUP_MARGIN = 33 ns − 1 ns – 5 ns – 7 ns – 11 ns – 7 ns = 2 ns

tHOLD_MARGIN =11 ns + 7 ns + 7 ns – 1 ns – 2 ns = 22 ns

建立时间和保持时间裕量均为正,因此,SPI SCLK 可以在30 MHz下工作。

图4. DSP 和AD7980 之间的数字接口。

数字信号质量

数字信号完整性(包括时序和信号质量)确保:在额定电压下接收信号;不相互干扰;不损坏其他器件;不污染电磁频谱。信号质量由多个项定义,如图5 所示。本部分将介绍过冲、振铃、反射和串扰。

图5. 常用信号质量规格。

反射是阻抗不匹配导致的结果。当信号沿着走线传播时,每个接口处的瞬时阻抗都不相同。部分信号会反射回去,部分信号会继续沿着线路传播。反射可能在接收器端产生过冲、欠冲、振铃和非单调性时钟边沿。

过冲和欠冲可能损坏输入保护电路,或者缩短IC 的使用寿命。图6 所示为AD7606的绝对最大额定值。数字输入电压应在–0.3 V 和VDRIVE+ 0.3 V 之间。另外,如果振铃高于最大 VIL或小于最小VIH可能导致逻辑误差。

图6. AD7606 的绝对最大额定值。

为了减少反射:

尽量缩短走线的长度

控制走线的特性阻抗

消除分支

使用适当的端接方案

用环路面积小的固体金属作为返回电流参考平面

使用较低的驱动电流和压摆率

针对走线特性阻抗的计算,目前有许多软件工具或网站,比如Polar Instruments Si9000 PCB传输线路场求解器。借助这些工具,特性阻抗计算起来非常简单,只需选择传输线路型号并设置相应的参数即可,比如电介质类型和厚度以及走线宽度、厚度和隔离。

作为一种新兴标准,IBIS 用于描述IC 数字I/O 的模拟行为。ADI提供针对SAR ADC 的IBIS模型。预布局仿真可检测时钟分布、芯片封装类型、电路板堆叠、网络拓扑结构和端接策略。也可检测串行接口时序限制以便为定位和布局提供指导。后仿真可验证设计是否符合所有指导方针和限制的要求,同时检测是否存在反射、振铃、串扰等违反要求的情况。

在图7 中,一个驱动器通过一条12 英寸的微带线路连接SCLK1,另一个驱动器通过一个与微带串联的43 Ω 电阻连接SCLK2。

图7. 驱动AD7606 SCLK。

在图8 中,SCLK1 上的大过冲违反了–0.3 V 至+3.6 V 的绝对最大额定值。串联电阻可减小SCLK2 上的压摆率,使信号处于额定值之内。

图8. AD7606 IBIS 过冲模型仿真。

串扰是能量通过互电容(电场)或互感(磁场)在并行传输线路间耦合的情况。串扰量取决于信号的上升时间、并行线路的长度以及它们之间的间距。

控制串扰的一些常用方法为:

增加线路间距

减小并行布线

使走线靠近参考金属平面

使用适当的端接方案

减小信号压摆率

数字活动导致的性能下降

数字活动可能导致SAR ADC 性能下降,使SNR 因数字地或电源噪声、采样时钟抖动和数字信号干扰而减小。

孔径或采样时钟抖动设定SNR限值,尤其是对高频输入信号。系统抖动有两个来源:来自片内采样保持电路的孔径抖动(内部抖动),以及采样时钟上的抖动(外部抖动)。孔径抖动为转换间的采样时间变化,为ADC的函数。采样时钟抖动通常为主要误差源,但两个源都会导致模拟输入采样时间变化,如图9所示。它们的影响难以区分。

总抖动会产生误差电压,ADC 总SNR 的限制因素为

 

其中,f 为模拟输入频率,tJ为总时钟抖动。

例如,当模拟输入为10 kHz,总抖动为1 ns 时,SNR 限值为84 dB。

图9. 采样时钟抖动导致的误差电压。

数字输出开关导致的电源噪声应与敏感的模拟电源相隔离。分别去耦模拟和数字电源,密切注意地回流路径。

高精度SAR ADC 可能对数字接口上的活动很敏感,即使电源适当去耦和隔离时。突发时钟往往优于连续时钟。数据手册通常会列出接口不应活动的安静时间。在较高吞吐速率条件下,可能难以减少这些时间内的数字活动,通常为采样时刻及出现关键位判断点时。

结论

密切注意数字活动,确保SAR ADC 转换有效。数字活动导致的误差可能使SAR ADC 进入未知状态,导致故障,或者降低性能。希望本文能帮助设计师排查根本原因,同时还能提供解决方案。

 

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
CR203280D0 1 Strong Capacitor Co Ltd Fixed Resistor, Metal Glaze/thick Film, 0.75W, 328ohm, 200V, 0.5% +/-Tol, -100,100ppm/Cel, 2010,
暂无数据 查看
HHM1520A2 1 TDK Corporation RF Transformer, 2300MHz Min, 2500MHz Max,

ECAD模型

下载ECAD模型
暂无数据 查看
EMI8143MUTAG 1 onsemi Common Mode Filter with ESD Protection 3Pair CMF for HDMI in DFN, 3000-REEL

ECAD模型

下载ECAD模型
$1 查看
ADI

ADI

亚德诺半导体全称为亚德诺半导体技术有限公司(analog devices,inc.)简称ADI。是一家专营半导体传感器和信号处理ic的卓越的供应商,ADI将创新、业绩和卓越作为企业的文化支柱,并基此成长为该技术领域最持久高速增长的企业之一。ADI是业界卓越的半导体公司,在模拟信号、混合信号和数字信号处理的设计与制造领域都发挥着十分重要的作用。

亚德诺半导体全称为亚德诺半导体技术有限公司(analog devices,inc.)简称ADI。是一家专营半导体传感器和信号处理ic的卓越的供应商,ADI将创新、业绩和卓越作为企业的文化支柱,并基此成长为该技术领域最持久高速增长的企业之一。ADI是业界卓越的半导体公司,在模拟信号、混合信号和数字信号处理的设计与制造领域都发挥着十分重要的作用。收起

查看更多

相关推荐

登录即可解锁
  • 海量技术文章
  • 设计资源下载
  • 产业链客户资源
  • 写文章/发需求
立即登录

Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。