加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

安霸领先业界发布用于自动驾驶的集中式 4D 成像毫米波雷达架构

2022/12/07
1770
阅读需 9 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

安霸傲酷自适应 AI 毫米波雷达软件和高能效的 5 纳米制程的 CV3 AI 域控制器芯片首次实现 4D 成像毫米波雷达原始数据的集中式处理和前融合。

2022 年 12 月 6 日,美国加利福尼亚州圣克拉拉市, Ambarella(下称“安霸”,纳斯达克股票代码:AMBA,专注于 AI 视觉感知芯片的半导体公司),今天领先业界首发集中式 4D 成像毫米波雷达架构,它既可以对原始毫米波雷达数据进行集中处理,也可以与其它传感器输入,例如摄像头激光雷达超声波,进行深入的底层融合。这一突破性的架构为 ADAS 和 L2+ 至L5 的自动驾驶系统以及智能机器人的 AI 算法,提供了更高级的环境感知和更安全的路径规划。安霸傲酷独特的毫米波雷达技术,使用 AI 算法支持雷达波形对周围场景的动态适应,可输出精度高达 0.5 度角分辨率、每帧高达数万个点的超密集点云,并且有效工作距离超过 500 米。这所有的性能指标,都以少了一个数量级的天线 MIMO 通道来实现,这样不仅降低了数据带宽,功耗也更低。搭载傲酷技术的安霸集中式 4D 成像毫米波雷达,感知系统更灵活,性能更高,助力系统集成商在下一代的雷达设计中占得先机。

“2021 年,全球市场汽车 ADAS 领域生产了约 1 亿个毫米波雷达。”全球知名市场研究与战略咨询公司 Yole Group 旗下的 Yole Intelligence 的射频设备与技术团队首席分析师 Cédric Malaquin 解释说。“随着汽车安全方面的法规要求不断提高,以及更先进的自动驾驶系统的逐渐推进,我们预计到 2027 年这一数量将增长 2.5 倍”。事实上,主机厂从目前每辆车配置 1-3 个毫米波雷达,已演变为每辆车至少配置 5 个毫米波雷达[ 资料来源: 汽车毫米波雷达报告,Yole Intelligence,2022年
]。此外,关于毫米波雷达是应该采用分布式模块处理,还是集中式处理,以及关联的开发如何做,行业内有针锋相对的观点。一种做法是将多个雷达的数据集中式处理,这将使得主机厂获得更高性能的成像毫米波雷达系统,以实现新的 ADAS/AD 功能,同时优化毫米波雷达模组的成本。

这项独特的、极具性价比的新架构,终于在安霸 CV3 AI 域控制器主芯片上得以实现。安霸优化了算法,在CV3芯片上增加了专为毫米波雷达信号处定制的硬件单元。CV3 的每瓦特 AI 性能优势在业内逐渐被更多客户充分认识,其高计算性能和大内存容量使得 4D 毫米波雷达算法充分发挥,得到具有高点云密度、长探测范围 和高灵敏度的雷达感知结果,这让搭载单颗 CV3 的自动驾驶车辆和机器人也能高效地集中多传感器的实时处理感知、底层融合和路径规划。

安霸总裁兼 CEO 王奉民说:“业界尚未有其他半导体和软件公司同时在毫米波雷达算法、摄像头视觉影像处理,以及AI加速引擎等几个方面拥有领先的全栈能力。这些专业能力让我们能够创建一个前所未有的集中式域控处理架构,凭借 CV3 行业领先的性能功耗比,把傲酷毫米波雷达算法的领先优势更好发挥出来,有效地实现全新的 AI 感知、传感器融合和路径规划,这将有助于我们更深层地挖掘出 ADAS、自动驾驶和机器人市场的全部潜力。"

友商的 4D 成像毫米波雷达技术因数据量太大,难以有效传输和集中化处理。提供 4D 成像毫米波雷达所需的高角分辨率需要每个模块使用数千个 MIMO 天线,而它们每秒会产生数万亿 bit 的数据,同时,每个雷达模块将消耗超过 20 瓦的功率。一辆车需要至少六个雷达模块,其数据量也将倍增,因此,要集中处理数千根天线上的毫米波雷达数据,在技术上极为困难。

通过 AI 算法动态控制现有 MMIC 设备调制雷达波形,并使用 AI 算法来创建虚拟天线阵列,傲酷雷达技术将这种新架构中每个 MMIC 雷达头的天线阵列减少到 6 发射 x8 接收,并且在前端无需接雷达处理器。其结果就是,MMIC的数量大幅减少,同时实现了极高的0.5度方位角和俯仰角分辨率。此外,安霸的集中式架构在最大占空比的情况下,功耗明显降低,数据传输的带宽减少了 6 倍,不需要边缘端的雷达处理,也因此避免了信息过滤和传感器信息损失。

性价比高、软件定义的集中式架构还可以根据实时情况,在不同的传感器类型之间和同一类型的传感器之间动态分配 CV3 的处理资源。例如,在极端的雨天条件下,远程摄像头的有效数据会减少,CV3 可以将其部分资源转移,以增强毫米波雷达数据处理 性能。同样,如果车辆在雨天行驶在高速公路上时,CV3 可以专注于来自正前方的毫米波雷达传感器数据,以进一步扩大车辆的探测范围,同时提供更快的反应。这种对场景的自适应优化,是基于边缘处理的架构无法实现的,因为在边缘处理架构中,毫米波雷达数据是分布在每个模块中进行处理的,而处理性能是为最坏的情况而准备的,因此毫米波雷达的性能 往往没有得到充分利用。

这两种不同的毫米波雷达处理方法在下表中进行了总结:

CV3 标志着安霸下一代 CVflow® 架构的首次亮相,它包含有神经网络矢量处理器和通用计算矢量处理器,两者都包含了毫米波雷达专用信号处理。这些处理器在协同工作下,结合傲酷先进的雷达感知算法,可达到比传统边缘毫米波雷达处理器快 100 倍的高性能。

新款集中式架构的优势还包括更容易进行 OTA 软件升级,以便未来不断改进和适应新需求。相比之下,在确定每个模块使用的处理器和操作系统之后,每个边缘毫米波雷达模块的处理器必须单独更新;而单一的 OTA 更新可以直接推送到 CV3 主芯片,并在系统的所有雷达头中汇总。这些雷达头只需要雷达收发芯片 而不需要雷达处理器,这就降低了前装的成本,以及在发生事故后更换的材料成本(大多数毫米波雷达位于车辆的保险杠后面)。对比新一代集中式毫米波雷达软件更新的便利,由于传统的分布式雷达更新软件比较复杂,如今部署的许多毫米波雷达模块从未更新过软件。

新款集中式毫米波雷达架构的目标应用包括 ADAS 和 L2+ 至 L5 自动驾驶汽车,以及自主移动机器人(AMR)和自动引导车(AGV)机器人。这些设计通过安霸统一而灵活的软件开发环境得到简化,为汽车和机器人开发人员提供了一个可升级的软件平台,性能范围从 ADAS 和 L2+ 一直延伸到 L5。

最新的集中式架构将于 2023 CES 期间进行展示,本展示仅对安霸受邀嘉宾开放。如有需要可联系您的销售代表。

安霸

安霸

安霸的产品广泛应用于人眼和计算机视觉应用,包括视频监控、高级驾驶辅助系统(ADAS)、电子后视镜、行车记录仪、驾驶员/舱内监控、无人驾驶和机器人应用。通过提供高分辨率视频压缩、高级图像处理和强大的深度神经网络处理,安霸的低功耗芯片能使智能摄像机从高分辨率视频流中提取有价值的数据。

安霸的产品广泛应用于人眼和计算机视觉应用,包括视频监控、高级驾驶辅助系统(ADAS)、电子后视镜、行车记录仪、驾驶员/舱内监控、无人驾驶和机器人应用。通过提供高分辨率视频压缩、高级图像处理和强大的深度神经网络处理,安霸的低功耗芯片能使智能摄像机从高分辨率视频流中提取有价值的数据。收起

查看更多

相关推荐

电子产业图谱