• 方案介绍
  • 相关推荐
申请入驻 产业图谱

国产芯上运行TinyMaxi轻量级的神经网络推理库-米尔基于芯驰D9国产商显板

2024/07/05
176
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

本篇测评由与非网的优秀测评者“短笛君”提供。

本文将介绍基于米尔电子MYD-YD9360商显板(米尔基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。

算力测试

TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意单片机上运行轻量级深度学习模型~ 开源地址:

https://github.com/sipeed/TinyMaix

搭建的环境为编译的Ubuntu18.04 已经预装好cmake make工具

由于魔法网络原因,这里提前下载好tar包到宿主机上,然后传输到板卡中解压

  • 查看cmake版本

cmake -version

  • 查看make版本

make -version

确认文件路径,尽量不要拷贝到有权限的路径下

自带示例

文件结构

MNIST示例

MNIST是手写数字识别任务

cd到examples/mnist目录下 使用mkdir build && cd build 命令切换到build文件夹下

cmake ..
make
./ mnist

cmake生成构建系统

使用make构建可执行文件然后运行

可以看到输出信息

MNIST 示例默认未使用任何指令加速,运行了一张 28×28 的手写数字模拟图像,共消耗了 0.114 毫秒

MBNET示例

mbnet 是适用于移动设备的简单图像分类模型。

  • 切换到 /examples/mbnet 目录:
  • 修改 main.c 文件
  • 创建 build 文件夹并切换
  • 使用 cmake 命令生成构建系统
  • 使用 make 命令构建系统,生成可执行文件
  • 运行可执行文件,执行效果如下

MBNET 示例运行输入了一张 96×96×3 的 RGB 图像,输出 1000 分类,共消耗了 16.615 毫秒

运行cifar10 demo

米尔电子MYD-YD9360商显板

米尔科技

米尔科技

米尔电子,是一家专注于嵌入式处理器模组设计、研发、生产和销售于一体的国家级高新技术企业,也被评为专精特新企业。米尔电子深耕嵌入式领域10多年,致力于为企业级客户提供基于ARM、FPGA、RISC-V和AI等各种架构,稳定可靠的处理器模组,满足客户大批量产品应用部署的需求,同时为客户提供产品定制设计、行业应用解决方案和OEM的一站式服务。

米尔电子,是一家专注于嵌入式处理器模组设计、研发、生产和销售于一体的国家级高新技术企业,也被评为专精特新企业。米尔电子深耕嵌入式领域10多年,致力于为企业级客户提供基于ARM、FPGA、RISC-V和AI等各种架构,稳定可靠的处理器模组,满足客户大批量产品应用部署的需求,同时为客户提供产品定制设计、行业应用解决方案和OEM的一站式服务。 收起

查看更多
点赞
收藏
评论
分享
加入交流群
举报

相关推荐

方案定制

去合作
方案开发定制化,2000+方案商即时响应!

米尔电子,是一家专注于嵌入式处理器模组设计、研发、生产和销售于一体的国家级高新技术企业,也被评为专精特新企业。米尔电子深耕嵌入式领域10多年,致力于为企业级客户提供基于ARM、FPGA、RISC-V和AI等各种架构,稳定可靠的处理器模组,满足客户大批量产品应用部署的需求,同时为客户提供产品定制设计、行业应用解决方案和OEM的一站式服务。 米尔英文简称“MYIR”,是“Make Your Idea Real”第一个大写字母的缩写。我们的理念是“专业服务助力客户成功”,目前米尔已通过专业高效的服务,帮助全球数万家企业的产品成功上市。