加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入

基于Dlib的人脸识别客户端(UI界面)

08/23 09:00
2949
服务支持:
技术交流群

完成交易后在“购买成功”页面扫码入群,即可与技术大咖们分享疑惑和经验、收获成长和认同、领取优惠和红包等。

虚拟商品不可退

当前内容为数字版权作品,购买后不支持退换且无法转移使用。

加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论
放大
实物图
相关方案
  • 方案介绍
    • 客户端界面
    • 代码思路
    • 使用说明
    • 部分源码
  • 相关文件
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

基于Dlib的人脸识别客户端

需要源码的朋友可私信我!!!!

客户端界面

在这里插入图片描述

代码思路

1、开发环境

  • 开发平台:win10
  • 开发软件:PyCharm
  • 界面开发:PyQt5

2、文档说明

  • face_lib文件夹
  1. align_dlib.py文件:主要进行人脸对齐。
  2. face_recg.py文件: 进行人脸识别,其中阈值为0.4,可根据相应情况进行修改。
  3. my.api.py文件: 自己写的各种函数方法。
  4. udp_recv.py文件:包含进行udp协议传输视频的类。
  • faces文件夹 每一个文件夹名字必须是英文字母,代表一个类,其每一个类别中可以有多张图片,但数量过多,识别过慢。图片必须是96*96大小的经过对齐的jpg格式图片。
  • model文件夹 存放你训练的模型。
  • gui.py文件 一些界面相关的函数。
  • inference.py文件 神经网络函数。
  • main.py文件

使用说明

  1. 点击“打开本地摄像头”按钮,在“摄像头采集信息”栏目中即会显示摄像头采集到的信息。
  2. 点击“打开网络摄像头”按钮,在“摄像头采集信息”栏目中即会显示通过WIFI传输到的视频信息。传输协议是UDP,目的是显示树莓派采集到的视频。
  3. 在打开摄像头后,点击获取人脸,左边会显示对齐后的人脸图片,大小为96*96.第一次使用时,数据集为空,在获得人脸图片后,点击新建人脸数据按钮,输入姓名,此时人脸图片保存在faces文件夹下。
  4. 当人脸图片上出现图片时,才可点击“人脸识别”按钮,点击后会在人脸图片下方显示预测的姓名和欧式距离。欧式距离,值越小,表示越相似。当距离大于一定阈值(默认为0.4),其姓名会显示为unknown。
  5. 点击“报错”功能按钮,把误识的人脸存入对应的人脸数据集中。例如:数据集中有5种人脸,分别标号为1、2、3、4、5,采集人脸其实为5号,却被误识为1、2、3、4或者unknown,这时点击“报错”按钮,把采集人脸存为5号人脸文件夹中即可。
  6. 阈值是影响人脸识别的关键因素,默认为0.4,可自行调整。
  7. 有2种模型可供下载,在model文件夹中可得下载链接
  • 此种模型在微软MS-Celeb-1M数据集上训练,在LFW上测试的准确率可达87%以上。
  • 此种模型在模型1的基础上,在LFW上继续训练,在LFW上测试的准确率可达91%以上。
  1. 可以自己训练模型

部分源码

main.py主函数文件:

import sys
import time
import cv2
import os
import numpy as np
from PyQt5 import QtWidgets, QtCore, QtGui
from face_lib import align_dlib, face_recg
from face_lib.udp_recv import UdpGetVideo
# import helpers
from gui import Ui_widget


class MyDesignerShow(QtWidgets.QWidget, Ui_widget):
    _signal = QtCore.pyqtSignal(int)

    def __init__(self):
        super(MyDesignerShow, self).__init__()
        self.timer_camera = QtCore.QTimer()   # 本地摄像头定时器
        self.timer_udp_video = QtCore.QTimer()  # UDP获取视频定时器
        self.cap = cv2.VideoCapture()         # 获得摄像头对象
        self.CAM_NUM = 0                      # 获取摄像头编号
        self.time = time                      # 获取时间对象
        self.PREDICTOR_PATH = './face_lib/shape_predictor_68_face_landmarks.dat'  # 关键点提取模型路径
        self.my_align = align_dlib.AlignDlib(self.PREDICTOR_PATH)     # 获取人脸对齐对象
        self.pix = QtGui.QPixmap()           # 获取QPixmap对象
        self.pic_show = None
        self.face_photo = None               # 人脸图片
        self.face_recog = face_recg.Recognize()  # 获取人脸识别对象

        self.setupUi(self)                          # 加载窗体
        self.btn_close.clicked.connect(self.close)   # 关闭程序
        self.btn_local_camera.clicked.connect(self.get_local_camera)   # 打开本地相机
        self.btn_web_camera.clicked.connect(self.get_udp_video)       # 打开UDP视频数据
        self.btn_get_face.clicked.connect(self.get_face)              # 得到人脸图像
        self.btn_debug.clicked.connect(self.debug)                    # 报错
        self.btn_new_face.clicked.connect(self.new_face)                # 新建人脸数据
        self.btn_face_recognize.clicked.connect(self.face_recognize)           # 人脸识别

        self.timer_camera.timeout.connect(self.show_local_camera)  # 计时结束调用show_camera()方法
        self.timer_udp_video.timeout.connect(self.show_udp_video)  # 计时结束调用show_udp_video()方法

    # 获取本地摄像头视频
    def get_local_camera(self):
        if self.timer_udp_video.isActive():      # 查询网络摄像头是否打开
            QtWidgets.QMessageBox.warning(self, u"Warning", u"请先关闭网络摄像头", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)

        elif not self.timer_camera.isActive():
            flag = self.cap.open(self.CAM_NUM)
            if not flag:
                QtWidgets.QMessageBox.warning(self, u"Warning", u"请检测相机与电脑是否连接正确", buttons=QtWidgets.QMessageBox.Ok,
                                                defaultButton=QtWidgets.QMessageBox.Ok)
            else:
                self.timer_camera.start(30)     # 30ms刷新一次
                self.btn_local_camera.setText(u'关闭本地摄像头')

        else:
            self.timer_camera.stop()    # 定时器关闭
            self.cap.release()          # 摄像头释放
            self.label_camera.clear()   # 视频显示区域清屏
            self.graphicsView.show()
            self.btn_local_camera.setText(u'打开本地摄像头')

    def show_local_camera(self):
        flag, image = self.cap.read()
        self.pic_show = cv2.resize(image, (640, 480))
        self.pic_show = cv2.cvtColor(self.pic_show, cv2.COLOR_BGR2RGB)
        showimage = QtGui.QImage(self.pic_show.data, self.pic_show.shape[1], self.pic_show.shape[0], QtGui.QImage.Format_RGB888)
        self.graphicsView.close()
        self.label_camera.setPixmap(self.pix.fromImage(showimage))

    def get_udp_video(self):
        if self.timer_camera.isActive():      # 查询本地摄像头
            QtWidgets.QMessageBox.warning(self, u"Warning", u"请先关闭本地摄像头", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)
        elif not self.timer_udp_video.isActive():
            self.time.sleep(1)
            self.udp_video = UdpGetVideo()  # 获取udp视频对象
            self.timer_udp_video.start(30)     # 10ms刷新一次
            self.btn_web_camera.setText(u'关闭网络摄像头')

        else:
            self.timer_udp_video.stop()    # 定时器关闭
            self.udp_video.close()         # udp视频接受关闭
            self.label_camera.clear()      # 视频显示区域清屏
            self.graphicsView.show()
            self.btn_web_camera.setText(u'打开网络摄像头')

    def show_udp_video(self):

        image = self.udp_video.receive()
        # 从内存缓存区中读取图像
        decimg = cv2.imdecode(image, 1)
        self.pic_show = cv2.resize(decimg, (640, 480))
        self.pic_show = cv2.cvtColor(self.pic_show, cv2.COLOR_BGR2RGB)
        showimage = QtGui.QImage(self.pic_show.data, self.pic_show.shape[1], self.pic_show.shape[0], QtGui.QImage.Format_RGB888)
        self.graphicsView.close()
        self.label_camera.setPixmap(self.pix.fromImage(showimage))

    def get_face(self):
        flag_cam = True
        if not self.timer_camera.isActive() and not self.timer_udp_video.isActive():      # 查询摄像头
            QtWidgets.QMessageBox.warning(self, u"Warning", u"请先打开摄像头", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)
            flag_cam = False
        if flag_cam:
            pic = self.pic_show
            if pic is not None:
                # 使用dlib自带的frontal_face_detector作为我们的特征提取器
                face_align = self.my_align.align(96, pic)
                if face_align is None:
                    QtWidgets.QMessageBox.warning(self, u"Warning", u"没有检测到人脸", buttons=QtWidgets.QMessageBox.Ok,
                                                  defaultButton=QtWidgets.QMessageBox.Ok)
                else:
                    face_align = cv2.cvtColor(face_align, cv2.COLOR_RGB2BGR)  # 转为BGR图片
                    self.face_photo = face_align
                    face_align = cv2.cvtColor(face_align, cv2.COLOR_BGR2RGB)  # 转为RGB图片
                    showimage = QtGui.QImage(face_align.data, face_align.shape[1], face_align.shape[0],
                                             QtGui.QImage.Format_RGB888)
                    self.label_face.setPixmap(QtGui.QPixmap.fromImage(showimage))
            else:
                QtWidgets.QMessageBox.warning(self, u"Warning", u"没有检测到图片", buttons=QtWidgets.QMessageBox.Ok,
                                              defaultButton=QtWidgets.QMessageBox.Ok)

    def face_recognize(self):
        if self.face_photo is None:
            QtWidgets.QMessageBox.warning(self, u"Warning", u"请先获取人脸图片", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)
        else:
            self.face_recog.reload_data()         # 重载人脸数据集
            names = self.face_recog.names
            if len(names) < 1:
                QtWidgets.QMessageBox.warning(self, u"Warning", u"数据集为空!", buttons=QtWidgets.QMessageBox.Ok,
                                              defaultButton=QtWidgets.QMessageBox.Ok)
            else:
                image_data = np.array(self.face_photo)
                image_data = image_data.astype('float32') / 255.0
                face_like = self.face_recog.whose_face(image_data)                    # 识别人脸
                for i in range(len(names)):
                    print('姓名:%s   欧式距离: %s' % (names[i], face_like[i]))
                    self.textEdit.append("姓名:" + str(names[i]) + "    欧式距离: " + str(face_like[i]))
                face_id, distance = self.face_recog.get_face_id(face_like)
                if face_id is not None:
                    self.label_name.setText(str(names[face_id]))
                else:
                    self.label_name.setText('unknown')
                self.label_look.setText(str(distance))

    def new_face(self):
        text, ok = QtWidgets.QInputDialog.getText(self, '英文字符!', '请输入你的英文名字:')
        if ok:
            print(text)
            if self.face_photo is not None:
                # 创建文件夹
                paths = './faces/' + text + '/'
                if not os.path.exists(paths):
                    os.makedirs(paths)
                    # 保存图片
                    s_time = time.ctime().replace(' ', '_').replace(':', '_')
                    cv2.imwrite(str(paths) + str(s_time) + '.jpg', self.face_photo)
                    self.textEdit.append("人脸已存放在 " + paths + ' 文件夹中!!')
                else:
                    QtWidgets.QMessageBox.warning(self, u"Warning", u"数据集中已有相同人名!",
                                                  buttons=QtWidgets.QMessageBox.Ok,
                                                  defaultButton=QtWidgets.QMessageBox.Ok)
        else:
            QtWidgets.QMessageBox.warning(self, u"Warning", u"输入错误", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)

    def debug(self):
        self.face_recog.reload_data()  # 重载人脸数据集
        num = self.face_recog.max_num
        file_names = self.face_recog.names
        print(file_names)
        if num > 0:
            result, ok = QtWidgets.QInputDialog.getItem(self, u"人脸数据校验", u"把人脸数据存入对应的文件夹中,可增加人脸识别的准确性。确定把图片存放在以下文件夹中吗?",
                                                        file_names, 1, False)
            if ok:
                if self.face_photo is not None:
                    # 保存图片
                    s_time = time.ctime().replace(' ', '_').replace(':', '_')
                    cv2.imwrite('./faces/' + result + '/' + str(s_time) + '.jpg', self.face_photo)
                    self.textEdit.append("已保存在./faces/" + result + '文件夹下!!')
        else:
            QtWidgets.QMessageBox.warning(self, u"Warning", u"数据集为空,请新建人脸数据!", buttons=QtWidgets.QMessageBox.Ok,
                                          defaultButton=QtWidgets.QMessageBox.Ok)

    def closeEvent(self, event):
        ok = QtWidgets.QPushButton()
        cacel = QtWidgets.QPushButton()

        msg = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Warning, u"关闭", u"是否关闭!")

        msg.addButton(ok, QtWidgets.QMessageBox.ActionRole)
        msg.addButton(cacel, QtWidgets.QMessageBox.RejectRole)
        ok.setText(u'确定')
        cacel.setText(u'取消')
        if msg.exec_() == QtWidgets.QMessageBox.RejectRole:
            event.ignore()
        else:
            if self.cap.isOpened():
                self.cap.release()
            if self.timer_camera.isActive():
                self.timer_camera.stop()
            if self.timer_udp_video.isActive():
                self.timer_udp_video.stop()
            event.accept()


if __name__ == "__main__":
    if not os.path.exists("./faces"):
        os.makedirs("./faces")
    app = QtWidgets.QApplication(sys.argv)
    myshow = MyDesignerShow()    # 创建实例
    myshow.show()           # 使用Qidget的show()方法
    sys.exit(app.exec_())


UI界面文件:

# -*- coding: utf-8 -*-

# Form implementation generated from reading ui file 'gui.ui'
#
# Created by: PyQt5 UI code generator 5.9.2
#
# WARNING! All changes made in this file will be lost!

from PyQt5 import QtCore, QtGui, QtWidgets

class Ui_widget(object):
    def setupUi(self, widget):
        widget.setObjectName("widget")
        widget.resize(1024, 768)
        widget.setMinimumSize(QtCore.QSize(1024, 768))
        widget.setMaximumSize(QtCore.QSize(1024, 768))
        self.label_camera = QtWidgets.QLabel(widget)
        self.label_camera.setEnabled(True)
        self.label_camera.setGeometry(QtCore.QRect(360, 40, 640, 480))
        self.label_camera.setMinimumSize(QtCore.QSize(640, 480))
        self.label_camera.setMaximumSize(QtCore.QSize(640, 480))
        self.label_camera.setText("")
        self.label_camera.setObjectName("label_camera")
        self.textEdit = QtWidgets.QTextEdit(widget)
        self.textEdit.setGeometry(QtCore.QRect(360, 550, 641, 181))
        self.textEdit.setObjectName("textEdit")
        self.graphicsView = QtWidgets.QGraphicsView(widget)
        self.graphicsView.setGeometry(QtCore.QRect(360, 40, 640, 480))
        self.graphicsView.setMinimumSize(QtCore.QSize(640, 480))
        self.graphicsView.setMaximumSize(QtCore.QSize(640, 480))
        self.graphicsView.setObjectName("graphicsView")
        self.label_2 = QtWidgets.QLabel(widget)
        self.label_2.setGeometry(QtCore.QRect(640, 20, 91, 16))
        self.label_2.setObjectName("label_2")
        self.label_3 = QtWidgets.QLabel(widget)
        self.label_3.setGeometry(QtCore.QRect(630, 530, 111, 20))
        self.label_3.setObjectName("label_3")
        self.layoutWidget = QtWidgets.QWidget(widget)
        self.layoutWidget.setGeometry(QtCore.QRect(40, 430, 281, 101))
        self.layoutWidget.setObjectName("layoutWidget")
        self.gridLayout = QtWidgets.QGridLayout(self.layoutWidget)
        self.gridLayout.setContentsMargins(0, 0, 0, 0)
        self.gridLayout.setObjectName("gridLayout")
        self.label_name = QtWidgets.QLabel(self.layoutWidget)
        self.label_name.setText("")
        self.label_name.setObjectName("label_name")
        self.gridLayout.addWidget(self.label_name, 0, 1, 1, 1)
        self.label_look = QtWidgets.QLabel(self.layoutWidget)
        self.label_look.setText("")
        self.label_look.setObjectName("label_look")
        self.gridLayout.addWidget(self.label_look, 2, 1, 1, 1)
        self.label_5 = QtWidgets.QLabel(self.layoutWidget)
        self.label_5.setObjectName("label_5")
        self.gridLayout.addWidget(self.label_5, 2, 0, 1, 1)
        self.label = QtWidgets.QLabel(self.layoutWidget)
        self.label.setObjectName("label")
        self.gridLayout.addWidget(self.label, 0, 0, 1, 1)
        self.label_face = QtWidgets.QLabel(widget)
        self.label_face.setEnabled(True)
        self.label_face.setGeometry(QtCore.QRect(50, 210, 96, 96))
        self.label_face.setMinimumSize(QtCore.QSize(96, 96))
        self.label_face.setMaximumSize(QtCore.QSize(96, 96))
        self.label_face.setObjectName("label_face")
        self.textEdit_2 = QtWidgets.QTextEdit(widget)
        self.textEdit_2.setGeometry(QtCore.QRect(40, 550, 281, 181))
        self.textEdit_2.setObjectName("textEdit_2")
        self.layoutWidget1 = QtWidgets.QWidget(widget)
        self.layoutWidget1.setGeometry(QtCore.QRect(40, 70, 281, 121))
        self.layoutWidget1.setObjectName("layoutWidget1")
        self.gridLayout_2 = QtWidgets.QGridLayout(self.layoutWidget1)
        self.gridLayout_2.setContentsMargins(0, 0, 0, 0)
        self.gridLayout_2.setObjectName("gridLayout_2")
        self.btn_local_camera = QtWidgets.QPushButton(self.layoutWidget1)
        self.btn_local_camera.setObjectName("btn_local_camera")
        self.gridLayout_2.addWidget(self.btn_local_camera, 0, 0, 1, 1)
        self.btn_web_camera = QtWidgets.QPushButton(self.layoutWidget1)
        self.btn_web_camera.setObjectName("btn_web_camera")
        self.gridLayout_2.addWidget(self.btn_web_camera, 1, 0, 1, 1)
        self.btn_close = QtWidgets.QPushButton(self.layoutWidget1)
        self.btn_close.setObjectName("btn_close")
        self.gridLayout_2.addWidget(self.btn_close, 2, 0, 1, 1)
        self.btn_get_face = QtWidgets.QPushButton(widget)
        self.btn_get_face.setEnabled(True)
        self.btn_get_face.setGeometry(QtCore.QRect(230, 220, 91, 41))
        self.btn_get_face.setMinimumSize(QtCore.QSize(0, 0))
        self.btn_get_face.setMaximumSize(QtCore.QSize(100, 60))
        self.btn_get_face.setObjectName("btn_get_face")
        self.btn_face_recognize = QtWidgets.QPushButton(widget)
        self.btn_face_recognize.setGeometry(QtCore.QRect(230, 280, 91, 41))
        self.btn_face_recognize.setMinimumSize(QtCore.QSize(30, 30))
        self.btn_face_recognize.setMaximumSize(QtCore.QSize(16777215, 100))
        self.btn_face_recognize.setObjectName("btn_face_recognize")
        self.btn_new_face = QtWidgets.QPushButton(widget)
        self.btn_new_face.setGeometry(QtCore.QRect(50, 350, 80, 31))
        self.btn_new_face.setMaximumSize(QtCore.QSize(100, 100))
        self.btn_new_face.setObjectName("btn_new_face")
        self.btn_debug = QtWidgets.QPushButton(widget)
        self.btn_debug.setGeometry(QtCore.QRect(230, 350, 91, 31))
        self.btn_debug.setMaximumSize(QtCore.QSize(100, 100))
        self.btn_debug.setObjectName("btn_debug")

        self.retranslateUi(widget)
        QtCore.QMetaObject.connectSlotsByName(widget)

    def retranslateUi(self, widget):
        _translate = QtCore.QCoreApplication.translate
        widget.setWindowTitle(_translate("widget", "Form"))
        self.label_2.setText(_translate("widget", "摄像头采集信息"))
        self.label_3.setText(_translate("widget", "调试信息显示窗口"))
        self.label_5.setText(_translate("widget", "    欧式距离:"))
        self.label.setText(_translate("widget", "    预测姓名:"))
        self.label_face.setText(_translate("widget", "<html><head/><body><p align="center"><span style=" font-size:14pt; vertical-align:sub;">人脸图片</span></p></body></html>"))
        self.textEdit_2.setHtml(_translate("widget", "<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">n"
"<html><head><meta name="qrichtext" content="1" /><style type="text/css">n"
"p, li { white-space: pre-wrap; }n"
"</style></head><body style=" font-family:'SimSun'; font-size:9pt; font-weight:400; font-style:normal;">n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt; font-weight:600;">说明:</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">1.初次使用软件,请确保model文件夹存有训练好的权重</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">2.初次使用请新建人脸数据,名字必须为英文字符</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">3.欧式距离越大,代表越不相似,越小代表越相似</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">4.每次点击</span><span style=" font-size:8pt; font-weight:600; text-decoration: underline;">人脸识别</span><span style=" font-size:8pt;">前都必须先</span><span style=" font-size:8pt; font-weight:600; text-decoration: underline;">获取人脸</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt; font-weight:600;">步骤:</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">1.打开本地摄像头或者网络摄像头</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">2.点击获取人脸</span></p>n"
"<p style=" margin-top:12px; margin-bottom:12px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-size:8pt;">3.点击人脸识别</span></p></body></html>"))
        self.btn_local_camera.setText(_translate("widget", "打开本地摄像头"))
        self.btn_web_camera.setText(_translate("widget", "打开网络摄像头"))
        self.btn_close.setText(_translate("widget", "关闭程序"))
        self.btn_get_face.setText(_translate("widget", "获取人脸"))
        self.btn_face_recognize.setText(_translate("widget", "人脸识别"))
        self.btn_new_face.setText(_translate("widget", "新建人脸数据"))
        self.btn_debug.setText(_translate("widget", "报错"))


博客主页:https://blog.csdn.net/weixin_51141489,需要源码或相关资料实物的友友请关注、点赞,私信吧!

  • 联系方式.txt

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
SN74LVC14APWRG4 1 Texas Instruments 6-ch, 2-V to 3.6-V inverters with Schmitt-Trigger inputs 14-TSSOP -40 to 125

ECAD模型

下载ECAD模型
$0.57 查看
PS2801-4-F3-A 1 NEC Electronics Group Transistor Output Optocoupler, 1-Element, 2500V Isolation,
$3.65 查看
NX5032GA-20.000M-STD-CSU-2 1 Nihon Dempa Kogyo Co Ltd Parallel - Fundamental Quartz Crystal, 20MHz Nom, ROHS COMPLIANT PACKAGE-2
暂无数据 查看

相关推荐

电子产业图谱