基于51单片机甲醛浓度检测系统仿真设计(仿真+程序+原理图+报告+讲解)
原理图:Altium Designer
仿真图proteus 8.9
程序编译器:keil 4/keil 5
编程语言:C语言
设计编号C0044
资料下载(可点击)
功能说明
由51单片机+LCD1602液晶显示屏+按键+蜂鸣器+指示灯+电源构成
具体功能:
1、甲醛浓度数据经过单片机处理,由LCD1602实时显示;
②可通过按键设置甲醛报警阈值;
③甲醛浓度超过报警阈值时,开始声光报警。
全部资料包括程序(注释)、AD原理图、protues仿真、参考论文、视频讲解、资料使用介绍等。
仿真图
单片机最小系统介绍
单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。本文的单片机特指51单片机,具体芯片型号是STC89C52RC。需注意STC89C51,STC89C52,AT89C51,AT89C52都是51单片机的一种具体芯片型号。
最小系统组成:
51单片机最小系统:单片机、复位电路、晶振(时钟)电路、电源
最小系统用到的引脚
1、主电源引脚(2根)
VCC:电源输入,接+5V电源
GND:接地线
2、外接晶振引脚(2根)
XTAL1:片内振荡电路的输入端
XTAL2:片内振荡电路的输出端
3、控制引脚(4根)
RST/VPP:复位引脚,引脚上
复位电路
在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。可以算出电容充电到电源电压的0.7倍,即电容两端电压为3.5V、电阻两端电压为1.5V时,需要的时间约为T=RC=10K*10UF=0.1S。
也就是说在单片机上电启动的0.1S内,电容两端的电压从0-3.5V不断增加,这个时候10K电阻两端的电压为从5-1.5V不断减少(串联电路各处电压之和为总电压),所以RST引脚所接收到的电压是5V-1.5V的过程,也就是高电平到低电平的过程。
单片机RST引脚是高电平有效,即复位;低电平无效,即单片机正常工作。所以在开机0.1S内,单片机系统RST引脚接收到了时间为0.1S左右的高电平信号,所以实现了自动复位。
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位。
晶振电路
晶振基本概念 晶振全名叫晶体振荡器,每个单片机系统里都有晶振,晶振是由石英晶体经过加工并镀上电极而做成的,主要的特性就是通电后会产生机械震荡,可以给单片机提供稳定的时钟源,晶振提供时钟频率越高,单片机的运行速度也就越快。 晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
晶振起振后, 产生的振动信号会通过XTAL1引脚, 依次经过振荡器和时钟发生器的处理,得到机器周期信号,作为指令操作的依据。51单片机常用的晶振是12M和11.0592M
程序
主函数
void main()
{
uchar h,l;
LCD1602_cls(); //LCD 1602 调用初始化程序
TMOD=0x21; //配置定时
TH0=0x4c; //50ms 定时赋值
TL0=0x00;
ET0=1;
TR0=1;
TH1=0xfd; //串口波特率定时初始
TL1=0xfd;
SCON=0x50; //只发送
EA=1; //打开定时总中断
ES=1; //打开串口中断
TR1=1;
h=byte_read(0x2000);
l=byte_read(0x2001); //读取保存的数据
ch2o_H=h*256+l;
if(ch2o_H>700)
ch2o_H=80;
while(1)
{
show(); //显示函数
key(); //按键处理程序
proc(); //超限处理程序
}
}