加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入

基于51单片机数字频率计仿真设计(proteus仿真+程序+原理图+参考报告+器件清单)

08/05 17:05
1876
服务支持:
技术交流群

完成交易后在“购买成功”页面扫码入群,即可与技术大咖们分享疑惑和经验、收获成长和认同、领取优惠和红包等。

虚拟商品不可退

当前内容为数字版权作品,购买后不支持退换且无法转移使用。

加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论
放大
实物图
相关方案
  • 方案介绍
  • 相关文件
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

仿真图proteus 8.9

程序编译器:keil 4/keil 5

编程语言:C语言

设计编号:C0052

主要功能

51单片机+信号输入+74HC14整形电路+74HC390分频电路+LCD1602显示模块+电源构成。

1、能测出正弦波三角波方波等波形的频率;

2、频率的测量范围为1Hz—12MHz,且能检测幅度最小值为1Vpp的信号;

3、通过LCD1602液晶显示屏显示检测到的即时频率数值(最多8位数,单位为Hz)。

全部资料包括程序(注释)、AD原理图、protues仿真、参考论文、讲解、资料使用介绍等。

任务书

数字频率计是一种基本的测量仪器。它被广泛应用于航天、电子、测控等领域,还被应用在计算机及各种数学仪表中。一般采用的是十进制数字,显示被测信号频率。基本功能是测量正弦信号方波信号以及其他各种单位时间内变坏的物理量。由于其使用十进制数显示,测量迅速精确,显示直观,所以经常被用来使用。

本文主要介绍数字频率计的设计和调试,本作品是基于52单片机作为平台,基本原理是通过52单片机进行频率的采集和分析工作,在通过程序使其显示在LCD1602的液晶显示屏上,通过液晶显示屏,让使用者能够直观的看到当前的输入频率是多少。

由于52单片机能处理的频率信号强度有限,所以这次我们先用74HC390芯片对输入的信号进行了分频,使其降低了100倍,才送去给单片机处理,而且为了使1602液晶显示屏能更好的兼容,在程序上我们做了三次初始化。

实物图

img

仿真图

​ 在电子测量领域中,频率测量的精确度是最高的,可达10至10img数量级。因此,在生产过程中许多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。

​ 国际上数字频率计的分类很多。按功能分类,因计数式频率计的测量功能很多,用途很广。所以根据仪器具有的功能,电子计数器有通用和专用之分。一、通用型计数器:通用型计数器是一种具有多种测量功能、多种用途的万能计数器。它可测量频率、周期、多周期平均值、时间间隔、累加计数、计时等;若配上相应插件,就可测相位、电压、电流、功率、电阻等电量;配上适当的传感器,还可进行长度、重量、压力、温度、速度等非电量的测量。二、专用计数器:专用计数器指专门用来测量某种单一功能的计数器。如频率计数器,只能专门用来测量高频和微波频率;时间计数器,是以测量时间为基础的计数器,其测时分辨力和准确度很高,可达ns数量级;特种计数器,它具有特种功能,如可逆计数器、阈值计数器、差值计数器、倒数计数器等,用于工业和自控技术等方面。数字频率计按频段分类:①低速计数器:最高计数频率<10MHz;②中速计数器:最高计数频率10—100MHz;③高速计数器:最高计数频率>100MHz;④微波频率计数器:测频范围1—80GHz或更高。

img

img

原理图

​ 此次智能电子设计与制作实训本小组的题目为“数字频率计的设计”,在仔细研究了题目要求并通过小组内部积极细致的讨论之后,决定作品采用的功能方案如下:①能测出正弦波、三角波或方波等波形的频率。②频率的测量范围为1Hz—20MHz,且能检测幅度最小值为1Vpp的信号;③通过LCD1602液晶显示屏显示检测到的即时频率数值(最多8位数,单位为Hz)。值得一提的是,当输入频率大于20KHz的信号时,由于采用了100分频采样,显示结果稍有误差,如输入最大测量频率20MHz的信号时,LCD1602液晶显示屏上显示的测量结果为19998900HZ,误差不超过十万分之一,在可接受范围之内。

以下将以待测输入信号走向为顺序介绍电路中各个功能模块。

img

信号采集模块

img

为了有效防止因信号过小而造成的检测障碍,在信号输入处采用了三极管共射放大电路,如图1.1所示。实际工作中,我们必须解决放大电路与信号源及放大电路与负载之间的耦合问题。一方面要求耦合电路能够传输交流的输入和输出信号,传输过程中的信号损耗尽可能小;另一方面又要求信号源,放大电路、负载之间的直流工作状态互补影响,即有“隔直”作用,电路的C1、C7就很好的解决了这个问题即固定偏置共射极放大器。集电极电压通过基极偏置电阻R2使晶体管Je正偏;同时拖过R3使Jc反偏,从而实现信号源放大。

脉冲产生模块

img

​ 脉冲产生模块采用74HC14实现了三次施密特触发并反相,从图1.2可以看出,来自信号采集模块的经过放大的信号从74HC14的1脚进入,经过1A→1Y、2A→2Y和3A→3Y三次施密特触发并反相最终将缓慢变化的输入信号转换成清晰、无抖动的信号从6脚输出。

分频模块

74HC390具有有八个主从触发器和附加门以构成两个独立的4位计数器,其中每个计数器皆包含两个部分:“除2计数部分”和“除5计数部分”,每个计数器又有一个清除输入和一个时钟输入。它可以实现等于2 分频、5 分频乃至100 分频的任何累加倍数的周期长度,且可以连成十进制计数器或二-五进制计数器以分别实现两种进制的数值输出。由于每个计数级都有并行输出,所以系统定时信号可以获得输入计数频率的任何因子。

74HC390具有以下特点:

①A和B触发器都有独立的时钟

②每个计数器都有直接清除

③有效提高系统密度

④缓冲输出减小集电极转换的可能性

程序

img

主要代码

/----------------主函数--------------------
void main()
{ 
	unsigned char i;
	LCD_init();
	timer_init();             //定时/计数器初始化 
	for(i = 0;i<4;i++)
	{
	 	LCD_disp_char(i+0,1,character_1[i]);
	}
	while(1)
	{
		dis_num();         //显示
		delay_1s();
	}
}
//-------------------定时/计数器初始化--------------
void timer_init(void)         //定时/计数器初始化
{ 
	TMOD=0x66;                //计数器0和计数器1工作工作方式2,自动重装初值 
	TH0=0;                    //计数器初值为0
	TL0=0;
	TR0=1;                    //计数器开始计数	    
	ET0=1;                    //打开计数器0中断   
	TH1=0;                    //计数器初值为0
	TL1=0;
	TR1=1;                    //计数器开始计数	    
	ET1=1;                    //打开计数器1中断   
	RCAP2H=(65536-62500)/256; //在程序初始化的时候给RCAP2L和RCAP2H赋值, 
	RCAP2L=(65536-62500)%256; //TH2和TL2将会在中断产生时自动使TH2=RCAP2H,TL2=RCAP2L。 
	TH2=RCAP2H;               //12M晶振下每次中断62.5ms(1s=1000ms=62.5ms×16)
	TL2=RCAP2L;
	ET2=1;                    //打开定时器2中断	 
	TR2=1;                    //定时器2开始计时  
	EA=1;                     //开总中断   
} 
//------------------中断函数----------------------
void timer2(void) interrupt 5 //定时器2中断(62.5ms)
{
	time++;
	TF2=0;                    //定时器2的中断标志位TF2不能够由硬件清零,所以要在中断服务程序中将其清零
	if (time==16)             //定时1s时间到  
	{
	   time=0;                //计时清0
	   EA=0;                  //关中断		 
	   fre=(long)count1*256+TL1;     //count*256强制转换成long型,否则将不产生进位~先判断分频后(计数器1)
	   FLAG = 0; 
	  
	   if(fre<2000)//如果不到200KHz则读取分频前(计数器0)频率(200K÷100=2000)
	   {
	   		fre = (long)count*256+TL0;
			FLAG = 1;          
	   } 
		if(!FLAG)
		{
			fre = fre *100;//100分频
		}
	   TL0=0;                 //清零计数器0计数	    
	   TH0=0;
	   TL1=0;
	   TH1=0; 
	   count=0;               //清零计数器0计数	  
	   count1=0;
	   EA=1;                  //开中断	    
	}
} 
//----------------------------------------------------------------
void timer0(void) interrupt 1 //计数器0中断(100分频前)	 
{
	count++;
}		
//----------------------------------------------------------------
void timer1(void) interrupt 3 //计数器1中断(100分频后) 
{
	count1++;
}

设计报告

img

全部参考资料

资料下载链接

img

  • 设计资料获取联系方式.doc

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
AT89C51CC03UA-RDTUM 1 Atmel Corporation Microcontroller, 8-Bit, FLASH, 8051 CPU, 60MHz, CMOS, PQFP64, GREEN, VQFP-64

ECAD模型

下载ECAD模型
$9.5 查看
AT91SAM7X512B-AU 1 Microchip Technology Inc IC MCU 32BIT 512KB FLASH 100LQFP

ECAD模型

下载ECAD模型
$13.29 查看
MCIMX535DVV1C 1 Freescale Semiconductor i.MX53 32-bit MPU, ARM Cortex-A8 core, 1GHz, PBGA 529
$36.91 查看

相关推荐

电子产业图谱