第19.2章-【星曈科技】openmv H7 plus openmv视觉循迹功能-完成视觉识别指定区域 OpenMV视觉模块循迹/巡线功能 STM32F103C8T6视觉巡线小车
本教程不止教学代码,而是原理和代码 调试多方面教学,请耐心学习。
这个是全网最详细的STM32项目教学视频。
第一篇在这里:
视频在这里
这个是全网最详细的STM32项目教学视频。
第一篇在这里:
视频在这里
19.2-openmv视觉循迹功能-完成视觉识别指定区域
功 能: Openmv循迹识别线
硬件要求: OpenMV4 H7 Plus 或者 OpenMV4 H7、openMV串口转接板(方便接线的,也可以不用)。
摄像头五个口 是否识别出来黑线,通过openmv软件串行终端输出
根据自己摄像头特点查看测试是否需要这两句 镜头反转的操作
# 注意是否有下面两句根据自己摄像头调整
sensor.set_vflip(True) #垂直方向翻转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
sensor.set_hmirror(True) #水平方向反转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
这里通过摄像头识别指定区域是否我们想要的阈值
通过roi来定指定区域
通过阈值编辑器设置阈值
阈值保持在变量这里
#最好根据自己情况设置一下!!!
GROUND_THRESHOLD=(0, 30, -22, 23, -128, 80)#阈值参数,用于在图像处理中对标物体进行颜色识别分割。在OpenMV IDE软件 工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。
然后为了方便观察openmv 板子程序是否在运行,我们增加对板载RGB灯 运动控制
led = pyb.LED(1) # led = pyb.LED(1)表示led表示红灯。各种状态如下:Red LED = 1, Green LED = 2, Blue LED = 3, IR LEDs = 4.
led.on() #点亮红灯 板载红灯点亮表示程序得到执行
使用代码如下
import pyb, sensor, image, math, time
from pyb import UART
import ustruct
from image import SEARCH_EX, SEARCH_DS
import time
import sensor, lcd
#导入需要的库和模块
#使用中可能根据自己情况需要修改的值
#1. GROUND_THRESHOLD 阈值参数 通过工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。
#2.注意是否有下面两句根据自己摄像头调整
#sensor.set_vflip(True)
#sensor.set_hmirror(True)
#sensor.set_contrast(1)#设置相机图像对比度。-3至+3。
#sensor.set_gainceiling(16)#设置相机图像增益上限。2, 4, 8, 16, 32, 64, 128。
roi1 = [( 20, 105, 10, 10),
( 45, 105, 10, 10),
( 75, 105, 10, 10),
( 105, 105, 10, 10),
(130, 105, 10, 10)]#定义一个名为roi1的列表,其中包含了5个元组。每个元组代表了一个矩形感兴趣区域在图像上的位置和大小。
#具体而言,每个元组包含了4个数值依次的含义是:ROI左上角点的x坐标、ROI左上角点的y坐标、ROI的宽度、ROI的高度
led = pyb.LED(1) # led = pyb.LED(1)表示led表示红灯。各种状态如下:Red LED = 1, Green LED = 2, Blue LED = 3, IR LEDs = 4.
led.on() #点亮红灯 板载红灯点亮表示程序得到执行
sensor.reset()#初始化相机传感器。
sensor.set_pixformat(sensor.RGB565)#设置相机模块的像素模式:sensor.RGB565: 16 bits/像素。
sensor.set_framesize(sensor.QQVGA)#设置图像分辨率、如果改变分辨率也要调整ROI区域。摄像头不同、应用场景不同可以选择不同分辨率。这里使用QQVGA可能画质很胡,但是为了兼容不同型号摄像头我们先使用QQVGA 不影响循迹效果
sensor.skip_frames(time=2000)#跳过指定数目的帧。在这里,设置为跳过2000毫秒(即2秒)的帧。这样可以给传感器一些时间进行初始化和自适应调整。
sensor.set_auto_whitebal(True)#设置为自动白平衡模式。这使得摄像头可以根据场景中的光照条件自动调整图像的白平衡,从而保持图像色彩更加准确和自然。
sensor.set_auto_gain(False)#关闭自动增益模式。通常情况下,开启自动增益会帮助摄像头自动调整亮度,并在低亮度环境下提高图像清晰度。通过设置为False,禁用了这个功能,使用固定增益值。
# 注意是否有下面两句根据自己摄像头调整
sensor.set_vflip(True) #垂直方向翻转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
sensor.set_hmirror(True) #水平方向反转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
#lcd.init() #初始化lcd屏幕
#最好根据自己情况设置一下!!!
GROUND_THRESHOLD=(0, 30, -22, 23, -128, 80)#阈值参数,用于在图像处理中对标物体进行颜色识别分割。在OpenMV IDE软件 工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。
while(True):
data=0
blob1=None
blob2=None
blob3=None
blob4=None
blob5=None
flag = [0,0,0,0,0]
img = sensor.snapshot().lens_corr(strength = 1.7 , zoom = 1.0)#对获取到的图像执行镜头校正的操作。
blob1 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[0])#在图像中通过颜色阈值 GROUND_THRESHOLD1 检测 roi1[0] 区域内的色块,并将检测结果赋值给 blob1。
blob2 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[1])#同理
blob3 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[2])
blob4 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[3])
blob5 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[4])
if blob1:#如果roi1区域内找到阈值色块 就会赋值flag[0]为1
flag[0] = 1
if blob2:
flag[1] = 1
if blob3:
flag[2] = 1
if blob4:
flag[3] = 1
if blob5:
flag[4] = 1
print(flag[0],flag[1],flag[2],flag[3],flag[4])#把数据打印在串行终端方便调试
for rec in roi1:#遍历所有感兴趣的区域roi1 并绘制color=(255,0,0)颜色
img.draw_rectangle(rec, color=(255,0,0))
#lcd.display(img) # Take a picture and display the image.#将图像显示在lcd中
识别过程
联系:Q,1930299709
阅读全文