系统版本:传感器系统
振动传感器原理:振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,最后由机电变换部分再将变换为电量。
1、相对式机械接收原理由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。传感器的机械接收原理就是建立在此基础上的。相对式测振仪的工作接收原理是在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。
由此可知,相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体绝对不动时,才能测得被测物体的绝对振动。这样,就发生一个问题,当需要测的是绝对振动,但又找不到不动的参考点时,这类仪器就无用武之地。例如:在行驶的内燃机车上测试内燃机车的振动,在地震时测量地面及楼房的振动……,都不存在一个不动的参考点。在这种情况下,我们必须用另一种测量方式的测振仪进行测量,即利用惯性式测振仪。
2、惯性式机械接收原理惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块将与外壳发生相对运动,则装在质量块上的记录笔就可记录下质量元件与外壳的相对振动位移幅值,然后利用惯性质量块与外壳的相对振动位移的关系式,即可求出被测物体的绝对振动位移波形。
振动传感器应用
1、汽车防盗领域。振动传感器能够对车体特殊频段的振动进行监测,在车体被外力破坏的情况可以产生警报。如果有人击打、撞击或移动您的汽车,传感器就会向控制器发送信号,指示震动强度。根据震动的强度,控制器会发出表示警告的“哔哔声”或者全面拉响警报。
2、泵房机组设备安全监控。当泵房或机组发生振动时,应针对具体情况,用振动传感器测量逐一分析可能造成振动原因,找出问题的症结后,再采取有效的技术措施加以消除。
3、现代工业生产线领域。
4、城市道路维护领域。
5、长距离管道安全防范领域。
6、安防领域。分布式光纤周界入侵报警系统克服了传统安防设备普遍存在的监测距离短、功耗大、误报率高等问题,成为新一代周界安防监测系统。光纤振动时,会引起光纤中光波相位的变化,通过对光波相位的变化来检测是否有扰动信号产生。对采集到的信号进行分析处理,判断是否有入侵行为。
7、公路建设领域。压路机在压实作业中,往往采用振动压实技术,能够快速、有效的达到压实效果。我们可以通过振动传感器来测量、控制压路机的振动状况,它可以监控压路机振动机轮的加速度情况,并能够通过安装在控制室内的LCD/LED显示屏把加速度信号显示出来,方便操作人员实时查看和掌控。
8、各类体育训练。通过佩戴在胳膊和腿上的振动传感器,滑雪新手可以获得实时的指导,从而更准确的知道应该如何控制身体姿态。振动装置在舞蹈教学和体育运动的训练中已得到一些应用。
9、识别入侵车辆。研究人员正在向汽车行业寻求开发振动传感器和数字信号处理技术的方法,仅根据车辆的振动便可以识别和自动瞄准目标车辆。通过使用测振传感器收集的来自内部反介入区和禁入区车辆的振动数据实现战斗识别和自动目标识别。