加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

HFSS应用案例:人体结构对天线性能的影响

09/27 13:40
9.1万
  • 1评论
阅读需 11 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

1 概述

天线是手机、智能手表蓝牙耳机、可植入医疗设备等无线电子产品收发信号必不可少的装置,其性能好坏将直接影响通信质量。除了考虑天线在电子产品物理结构内的性能评估外,我们不得不考虑人体对天线性能的影响。以可穿戴设备天线为例,其工作频率大多为2.4GHz~2.48GHz或者5.725~5.875GHz,且多以倒F天线为基础进行设计和优化。

 

本案例基于ANSYS HFSS,演示如何利用Antenna Toolkit综合得到倒F天线,并采用HFSS中自带的人体结构模型,评估其对天线性能的影响。

2 HFSS中的人体模型

2.1 直接获取(模型的材料属性不可编辑)

HFSS在Component Libraries里提供了全身人体结构和局部人体结构,通过HFSS Design界面View下拉菜单勾选Component Libraries,即可调出Component Libraries窗口,可选中人体结构模型并拖拽到建模窗口,如图1所示。

图1 HFSS调出人体模型

HFSS自带的人体结构模型,其材料属性中的相对介电常数和体电导率已经内部定义为全局变量:$avg_epsilon_r和$avg_conductivity,查看这两个变量的方法是,右键选中Male_Body1>Component>Edit Definition,项目管理窗口会自动打开名称为Male_Body的新Project,其中包含该模型的3D Component模型,右键点击Male_Body Project >Project Datasets,在弹出的Datasets窗口中即可查看定义的材料参数。如图2所示。

图2 人体结构材料属性

2.2 模型导出(模型的材料属性可编辑)

如果想对人体结构的材料属性进行更改,推荐的方法是,在HFSS界面通过Modeler>Export直接导出结构模型为*.sab格式,以便后续使用。方法如图3所示。

 

图3人体结构.sab模型导出方法

3 人体手臂对2.44GHz倒F天线性能的影响

3.1 2.44GHz倒F天线建模

首先,HFSS主菜单View > ACT Extensions >Launch Wizards>HFSS Antenna Tool kit>Antenna Type>PIFA> PIFA-Planar Inverted-F,点击finish后界面会自动生成一个名称为PlanarInvertedF_ATK*的Project,该Project中有名称为PlanarInvertedF_ATK的HFSS Design,如图4所示。

图4 Antenna Tool kit创建2.44GHz倒F天线

选中倒F天线全部结构,在菜单栏选项卡中选择Model>Create 3D Component,保存在目标文件夹。如图5所示。

图5 创建倒F天线3D Component

3.2 人体手臂结构建模

新建一个HFSS Design,利用2.1节介绍的直接获取方法,直接将手臂模型拖拽到HFSS建模窗口中,目标坐标系选择Global CS。如图6所示。注:此时的手臂模型采用的是软件自定义的材料属性,无需进行设置。

图6 导入的手臂模型

3.3 模型相对位置设置

创建名称为“Antenna_F”的相对坐标系,如图7所示。然后选择Model>Browse 3D Component,读入此前创建的倒F天线3D Component,目标坐标系选择Antenna_F,调整倒F天线位置如图8所示。

图7 相对坐标系Antenna_F

 

图8 倒F天线与手臂相对位置

3.4 仿真设置

3.4.1 求解类型Solution Types

此处采用“Terminal Network”求解类型,为省去手动创建空气盒子的步骤,此处勾选“Auto-Open Region>Radiation”,HFSS将自动创建空气盒子并将其设置为Radiation辐射边界条件。如图9所示。

图9求解类型设置

注:求解开放问题时,在实体周围需创建一个空气盒子,该空气盒子包括了外部辐射表面。为吸收实体对外辐射的电磁波,这些外部辐射表面均会指定为辐射边界条件(ABC,PML或者FEBI)。如果选择了“Auto-Open Region”,HFSS将自动创建空气盒子,并根据用户所勾选的边界条件(ABC,PML或者FEBI),进行对应的边界条件设置。同时,HFSS也会自动创建远场辐射球面(3D、Azimuth、Elevation)。

3.4.2 求解设置Solution Setup

可以直接利用倒F天线中采用的求解设置,一个快速简便的方法是,在倒F天线设计中,直接复制其Solution Setup,并粘贴到当前含有人体手臂和倒F天线的设计中。如图10所示。

图10 求解设置Solution Setup

3.5 仿真结果

运行仿真得到如下结果。

3.5.1 回波损耗S11

在Result>Create Terminal Solution Data Report>Rectangular Plot中,选择Terminal S Parameter,如图11所示。从而得到倒F天线在自由空间和考虑手臂影响时的回波损耗S11结果,如图12所示。仿真结果显示,手臂对天线回损影响较小。

注:红色曲线表示包含手臂的天线远场辐射,黑色曲线表示自由空间中的天线远场辐射,下同。

图11 创建回波损耗S11结果报告

 

图12 包含手臂前后天线回损结果对比

注:图12中S11_Antenna Free Space曲线可从倒F天线设计的结果中Copy→Past到Terminal S Parameter结果中进行对比。方法如图13所示。

 

图13 复制/粘贴结果数据以作对比

3.5.2 远场辐射方向图

由于采用了Auto Open Region,Infinite Sphere将会自动创建3D、Azimuth和Elevation无限球面(Infinite Sphere),以观察远场辐射方向图。如需手动创建,方法如图14所示。

图14 无限球面(Infinite Sphere)手动创建方法

然后,在Result>Create Far Fields Report>Radiation Pattern中,Geometry依次选择Azimuth、Elevation,Category选择rE,Quantity选择rETotal,Function选择dB,得到倒F天线在自由空间和考虑手臂影响时的远场辐射方向图,如图15所示。仿真结果显示,手臂对天线远场辐射方向图影响明显,水平方向和垂直方向上的rE值平均减少了约5dB。

图15 远场辐射方向图结果对比

注:这里的平均值计算可直接调用Trace Characteristics中的平均值计算函数“mean”获取。方法如图16所示。

图16  Trace的平均值计算

在模型中显示方向图结果

在Result右键选择想要在模型中显示的结果,如rE_Azimuth,勾选“Show In Modeler Window”,即可在模型中直观地显示方向图结果。如图17所示。

(a)勾选Show in Modeler Window

(b)水平方向

(c)垂直方向

(d)3D辐射方向图

图17 在模型中显示方向图结果

3.5.3天线辐射效率

选择Result>Create Antenna Parameters Report>Data Table,得到倒F天线在自由空间和考虑手臂影响时的辐射效率,如图18所示。仿真结果显示,手臂对天线辐射效率影响明显,下降了超过60%。

图18 天线辐射效率结果对比

3.5.4 Solution Data

本次仿真耗时约13分钟,最大占用内存约5.4G,总网格数量155866。具体如图19所示。

图19 Solution Data

4 结论

本案例结合HFSS自带的人体结构模型和Antenna Toolkit工具,仿真评估了2.44GHz倒F天线性能受人体手臂的影响,包括天线回波损耗、远场辐射方向图、天线辐射效率等。表明了应用ANSYS HFSS可以有效地评估人体结构对天线性能的影响,利用此类方法,有助提升可穿戴电子产品天线的设计与评估能力。

相关推荐

电子产业图谱

公众号“老猫电磁馆”主笔,仿真软件专家,高频电磁问题专家,从事电磁场仿真与天线设计工作近二十年,关注方向包括各类天线设计与优化,高频电磁兼容,强电磁脉冲防护,5G与物联网等。爱好美的事物,喜欢用文字和光影与读者交流,工匠精神,人文关怀,从心开始。