你可曾想过这样一个问题:如果以技术创新、科技发展而论,我们当前正处在一个怎样的周期?
有按照热门技术领域的定义,比如这是一个AI、5G和区块链等交叉交融的时代。
也有按照应用产业的不同,划分为消费互联网和产业互联网等大板块。
还有根据物理介质的差异,把线上的一切视为电子驱动的虚拟世界,把原子为单位的空间成为现实世界,然后二者交错,虚实相生,给出数字孪生的叫法,也有Metaverse元宇宙的判断。
然而林林总总的归结,大体都只是对现象的描述,也缺乏一以贯之的本质抽象。解释过往之事时各执三观,预测未来之事时缺乏主线。
有没有一条隐隐的规律?可以大道至简地解释过去、现在和未来。
有——如果从数据的维度,一切技术创新、科技发展就能得到解释和预测。
过去和现在我们经历的技术创新,一面驱动力来自数据的体量,另一面则源自数据的高效运用。甚至面向未来,这两大作用力也在对“下一代创新”给出答案。
一切技术创新史都是数据史。
一切科技发展史,皆可作数据观。
技术创新简史
在以史为鉴的总结判断中,一张技术周期和应用机遇的趋势图被反复讲起。
制图样式各种各样,但呈现的结果大同小异。
以线性时间为轴,以当时主要技术或公司为成果:
门户时代→ 搜索时代 → 社交时代 → 电商时代 → 本地生活服务……
另一种类似的归纳是:
互联网→ 移动互联网→ AI……
但很多案例在这种线性归纳中难以得到解释。
比如门户代表新浪搜狐(1998)、社交代表腾讯(1998)、电商代表阿里巴巴(1999),搜索代表百度(2000)……基本不存在明显的创办周期。
而且也很难解释,门户时代消亡已成共识后,今日头条为代表的内容聚合应用又算什么?人人网开心网作为社交时代明星陨落后,微博微信陌陌算不算社交赛道?阿里京东提供的电商服务已如此丰富,电商领域依然有拼多多这样的大树长成。
另外,百度究竟是一家互联网公司?还是AI公司?
字节跳动又该划在移动互联网?还是AI?
还有以硬件交互终端作出的时代划分:
电脑PC → 手机 → AIoT可穿戴ARVRMR……
特别是在下一代终端的预测中,这样的逻辑被演绎得最充分。
但如果严格对照来看,承接在PC之后的实际是“智能手机”,手机和电脑其实都是一个时代大背景的同一批终端。
以及PC、智能手机之后,究竟能给下一代交互终端给出怎样的趋势预测呢?
越来越小型、越来越便携?
那现在XR领域上的各类产品,看起来都不尽符合。
时下风口之上的智能车,又该如何判断归属?
所以结论种种,最终指向——线性时间上的归纳可能并不本质。
而概括过去本身就已经如此困难重重、逻辑挑战一个接一个,遑论能给未来或趋势提供有说服力的参考。
比如下一个时代,究竟是5G6G的时代?AI机器人的时代?区块链的时代?新材料的时代?还是生物计算的时代?
又或者这些被视为下一代技术创新的方向,是否有一条共同的主线。
一条打通过去、现在和未来的技术创新中轴线。
一切技术创新史都是数据史
数据就是这条中轴线。
无论门户、搜索、社交、电商……还是互联网、移动互联网,抑或PC、手机等等各式各样的划分,都只是这条中轴线上的开花结果。并且决定了这种开花结果的先后次序。
同一个时期内,技术创新的落地,总是围绕着数据规模、质量(标签和结构化),处理效率来分先后的。
这也就能解释,为什么门户、社交、电商和搜索等不同应用,几乎差不多同时开创,但会是门户率先登上互联网铁王座。
在互联网应用的初期,在同样的在线化进程里,门户面前的数据规模、质量都要高得多得多。而多年后,之所以门户赛道上又长出今日头条为代表的应用,是因为数据处理的功劳。
门户改变了数据存储方式,却在分析处理上败给了今日头条。但是,没有智能手机——新一代数据传感器,也就难有今日头条。
电脑PC到智能手机的时代跃迁,终端大小、便携性只是表象,更具本质决定因素,依然是数据。
智能手机是比电脑更强大的数据收集器,并且在后来在分析处理数据的计算能力上也实现了超越。
同是“数据传感器”,手机拥有更加随时随地的数据输入能力,而且提供的标签、结构化维度更加细致——PC显然不具这种能力。
也正是智能手机作为数据传感器的普及,才让深度学习为核心的AI浪潮在2010年之后复兴。
因为正是越来越多图像数据,才让深度学习巨头们的算法有了演武场,在冷板凳几十年后在大数据集ImageNet上让所有人看见潜力和光芒。
而沿着这条主线,下一个交互终端,实际也就能更本质锁定:
是否有更强的数据传感能力?是否有更多维、精准的结构化数据能力?
AIoT可穿戴ARVRMR……这些备选项里也就有了解题方法。甚至进一步延伸向一些垂直领域,比如汽车,百年未有之大变革,还只是动力方式的变革吗?
所以以史为鉴,结论一言以蔽之:技术创新总是沿着数据之河而发生。
新的技术创新,总是发生在数据发展的前进方向上,发生在切中数据问题的痛点上。
前进方向:数据大的快于数据少的,结构化的优于非结构化的,高频产生的要强于低频的。
痛点方向:一方面指向数据的计算力,另一方面则指向数据的可信可用——特别是进入到隐私和敏感数据领域。
前者当前技术创新代表是AI和5G,可以在整个数据的传感、存储、分析的流程中发挥作用,更直白讲是把数据用起来。后者则以区块链为代表,能解决数据可信、隐私保护等方面的挑战。
这也就解释了,为什么两大新技术创新潮流,会在此时交融交汇。并且隐隐有基础设施之势。AI被视为生产力,区块链则被视为生产关系。
数据史观下的AI和区块链
AI与数据的关系,过去几年里已经被多音复义,人人皆知其原理。但区块链,可能由于加密货币的争议,被忽视了基础技术价值和基建意义。
本质上,区块链是一种分布式网络技术方法。在算法更好、算力更强,数据大爆炸的情况下,提供的一种对数据真伪、价值判断的能力,甚至还是基于隐私前提下的数据使用。
这也是区块链应用,正在从单点走向多点,从一个领域走向更多领域的内在原因。
在区块链的产业应用上,刚满一周年的蚂蚁链就是最具说服力的案例。不仅因为其技术布局上的领先,更因为正在展示出的“千行百业”适配特性。
这个启动于2016年的蚂蚁内部技术创新项目,最初只是希望解决公益慈善中的善款追踪问题。
其后在支付流程中拥有分布式“担保”能力而广为人知。并且因为区块链在全球范围内,先在数字货币领域爆火,更多人误以为只是金融领域的技术创新。
然而从2020年蚂蚁链升级、进入更多产业开始,这项技术算是真正迎来正名阶段。
区块链能做什么?
对义乌外贸商家而言,是账期的大大缩短。之前水晶商品要运到墨西哥后才能收到货款,现在从发货数据被认定的那一刻,对方货款就会入账。是账期从2个月到次日到账的变化。
对安徽砀山卖梨农户来说,是网购产品从线下到线上的盖章认定。源头可溯的好产品,过程中也不能被篡改。是好产品有好价格、形成好品牌,并且一切可持续的变化。
对文创IP版权产业而言,是化整为零时代的开启。过去版权都是成套成规模授权售卖。对于大版权公司而言,IP零授成本太高;对于中小商家而言,成套成规模版权买不起。但如果能化整为零,一个IP版权哪怕只商用一次也可快速交易,就会皆大欢喜。
区块链还能做什么?
从源头重塑信息的可信问题。如果互联网上的数据和信息传输能够全程可追溯,那么现如今假信息、假新闻,假数据的问题,就会得到极大改善。
而更进一步,基于可信信息、数据基础上的AI算法训练和模型应用,意义也自然不言自明。
上述这些区块链的所作所为,都不是畅想,而是蚂蚁链过去一年里实现的产业落地和应用。
所以也正是基于这样的实践成果,再以更大数据史观来审视,就能更有预见性地看清蚂蚁链所代表的区块链落地产业的技术创新所在——明确数据所有权之下,促进数据流动和价值兑现。
当前技术创新的“拦路虎”
在数据为本质的技术创新发展史中,过去要么是集中式的数据——比如互联网数据,要么是对于隐私数据换取便利性的无可奈何。
但现在,随着AI和5G等解决了数据计算的核心挑战,更多产业数据、隐私数据、分布式数据的权属问题,也就成了当下技术创新的拦路虎。
无独有偶,AI在最初几年高歌猛进之后,今年在医疗健康等之前备受看好的领域出现溃败,一定程度上就是数据要素问题没有得到解决。
于是趋势已然很清晰,只有数据所有权问题、隐私问题得到保障,数据才能加速成为生产资料。
而区块链,不就为此而生的吗?
所以大道至简,万佛归宗。技术创新发展史,本质就是数据不断输入到输出的历史。输出到输出的数据流动过程,形成了所谓的网络。
现如今,芯片为底层的计算单元带来更强的算力;AI提供更好的算法;而网络可信、数据可用的方案,则供应于区块链。
从数据史观的维度看,它们构成了技术创新的三大基础设施,以三大作用力交融交汇,驱动各行各业数字化、智能化进程的加速。
现状上,这三大作用力处于不同产业阶段:芯片算力已是成熟期,AI进入落地期,区块链则刚刚迈入产业探索期。
意义和价值上,他们缺一不可。眼前挑战而言,刚进入产业探索期的区块链,成为矛盾的主要方面。
区块链的加速度,决定了芯片和AI作用力的整体速度。
值得注意的是,春江水暖鸭先知,这种加速度,在开发者层面开始得到共振,并且由于蚂蚁链在区块链技术上的原创和先发性,这层关系技术创新的基础设施和生态的自主权,现在正在中国加速。
(注:作者为量子位主编,专栏仅代表个人观点)