本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV手势识别方案测试。
摘自优秀创作者-小火苗
米尔基于全志T527开发板
一、软件环境安装
1.安装OpenCV
sudo apt-get install libopencv-dev python3-opencv
2.安装pip
sudo apt-get install python3-pip
二、OpenCV手势识别步骤
1.图像获取:从摄像头或其他图像源获取手部图像。使用OpenCV的VideoCapture类可以捕获视频流,或者使用imread函数加载图像。
2.图像预处理:对图像进行预处理,以提高特征提取的准确性。常用的预处理操作包括灰度化、滤波、边缘检测、二值化、噪声去除和形态学处理等。
- 灰度化:将彩色图像转换为灰度图像,去除颜色信息,简化图像。
- 滤波:使用滤波器去除图像中的噪声。
- 边缘检测:使用边缘检测算法提取图像中的边缘信息。
- 二值化:将灰度图像转换为二值图像,将像素值分为黑色和白色。
- 形态学处理:使用形态学操作增强手势轮廓。
3.特征提取:从预处理后的图像中提取手部特征。常用的特征包括形状特征、纹理特征和运动轨迹特征等。
- 形状特征:提取手部轮廓、面积、周长、质心等形状特征。
- 纹理特征:提取手部皮肤纹理、皱纹等纹理特征。运动轨迹特征:提取手部
- 运动轨迹、速度、加速度等运动轨迹特征。
4.分类和识别:使用机器学习算法对提取的特征进行分类,以识别特定的手势。
三、代码实现
四、实践
1.程序运行
2、原始图像包含训练图像
3.识别结果
识别到了 剪刀 石头 布
原始图片
米尔T527开发板7折起,点击链接了解更多:https://detail.tmall.com/item.htm?id=758523182967