加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

“转移阻抗”???求你们不要再玩新梗了!

09/03 11:30
1325
阅读需 8 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

公众号 | 高速先生,作者 | 黄刚

在SI这个行业待久了,Chris发现其实也蛮卷的,就好像前几周写的电容滤板半径这篇文章,最新一些和Chris很熟的网友也评论说:现在好好做设计,好好做仿真都不行啦?一定要发明一些听起来很高大上的专有名词才能衬托自己的厉害?所谓滤板半径,其实就是研究如何摆放电容的位置,优化它给负载芯片的去耦效果的问题嘛,大电容摆远点,小电容摆近点,无非是考量电容到负载的等效电感的影响程度,就非要说得文绉绉的?

对此,Chris举双脚赞同,但是大家不能怪高速先生哈,这些名词也不是我们发明的是吧。所以Chris继续翻这篇文章的评论时,竟又听到另外一种声音:还有没有这样文绉绉的名词,给我来一打!我就喜欢听高速先生用简单的语言翻译,翻译后的内容就能轻松get到了!显然,Chris更喜欢这种态度,然后呢,借着组内的同事们刚好也问到一个不常听的概念,就“勉为其难”再给大家做一个科普咯。

它就是今天的猪脚——转移阻抗

相信大家会第一时间通过某搜索引擎去查这个名词。一般来说,建议大家不要查,因为查到的东西大家看完后其实也基本跟没看过一样。转移阻抗是电路分析与设计中的一个重要概念,用于描述电路中信号传递的特性。它代表了输入和输出之间的关系,并对电流、电压和功率等参数进行计算。转移阻抗的原理基于欧姆定律基尔霍夫定律。根据欧姆定律,电流与电压之间存在线性关系,而基尔霍夫定律则描述了电路中电流和电压的分布和总和等特性。通过计算输入信号与输出信号之间的比值,可以得到转移阻抗。对于线性系统,转移阻抗是一个常数;而对于非线性系统,转移阻抗可能是一个函数,表示输入信号与输出信号之间的关系……嗯,查完也看完了,大家感觉怎么样?

算了算了,Chris要不举个例子吧,我相信效果应该会比你们强行理解要来的好。我们假设在下面这个具体PCB电源设计的场景中,左边的电源VRM芯片给两颗DDR4颗粒供电,电压大家也知道,1.2V。

PDN阻抗前面问了大家,大家是知道的哈。那我们分别仿真得到颗粒1和颗粒2两个负载的PDN阻抗结果,如下所示。当然,我们按每个颗粒的最大电流是0.5A,然后允许1.2V电压波动的纹波幅度为5%,这样我们能计算得到满足要求的PDN目标阻抗值,也就是下面黑色的spec线。

可以看到,两个颗粒经过合理的设计,在板级的频段(几十MHz吧)能满足这个目标阻抗的要求。上面也是我们正常去做PDN仿真输出的结果,给出的是每个负载端的Z阻抗曲线,也称之为自阻抗。Z22是第一个颗粒的自阻抗,Z33是第二个颗粒的自阻抗。

那针对这个例子而言,什么叫转移阻抗呢?假设我们在上面的仿真中,增加一个仿真项,我们仿真第一个颗粒与第二个颗粒之间的阻抗,也就是Z32,仿真结果如下:

这个Z32就是我们今天要介绍的新概念,转移阻抗。那大家就好奇了,Z22和Z33的意义都知道,是表征在颗粒1和颗粒2需要拉载一定电流值的时候,由于存在自阻抗就会在颗粒处产生纹波。那Z32的意义是什么呢?

顺着大家对自阻抗理论的观点,Chris决定延伸一下。在上面的电源链路仿真中,我们分别去做下面两个case:case1是在dram2拉载电流,同时也去看dram2的纹波;case2是我们在dram1中拉载电流,然后同样还是看dram2的纹波。

那经过仿真之后就会分别得到case1和case2在dram2处的纹波结果。

其中case1的结果就是我们仿真颗粒2自阻抗时的表现,如下图所示,的确是能满足±5%纹波的要求。

当然还仿真了case2,就是颗粒1 拉载电流在颗粒2位置的纹波大小,如下所示:

感觉也不小哦,那到底这个case2的纹波表示啥意思呢?如果现在不懂的,别急哈,我们接着往下看。

那当然还有一种case,那就是两个颗粒都同时工作,同时拉载电流的情况,这个case更符合产品工作的场景,我们把它叫case3吧。

仿真后也能得到case3情况下同样在dram2位置的纹波结果,如下图。

感觉如果两个颗粒都同时拉载电流的时候,颗粒2的纹波好像±5%都hold不住了啊!仿真PDN的自阻抗是可以过的啊,为啥最后纹波却过不了啊?

带着上面的问题我们继续看,从结果看到三个case在dram2颗粒的纹波结果都有点不同,细心的朋友会不会提出这样的问题呢:那三种case的结果有没有什么关系?时间关系,Chris决定不卖关子了,那我们把case1和case2的纹波结果加起来,当然加的同时要减去直流的1.2V,大概写一个简单的公式,我们就能得到两个case加起来后的纹波结果。

咦,怎么上面加起来的纹波和case3有点像啊!大家也不用去找case3去对了,Chris把它们俩直接放在一起看,也不能说很像吧,只能说一模一样!!!

嗯,没错,case1加上case2的纹波等于case3的纹波。强调一次,是完全相同!最后Chris简单总结一下,就是对于dram2而言,它不仅要关心在它自己位置拉载的电流造成的纹波影响,还要考虑dram1拉载电流时产生的对dram2纹波的影响哈!相信Chris都这样暗示了,大家应该能明白啥是转移阻抗了吧!

声明:未经高速先生授权许可,任何机构、媒体、个人不得转载、修改、摘编或以其他方式复制、传播高速先生平台的原创作品。

Q:本期提问:看完了这篇文章,大家能用自己的话讲讲什么是转移阻抗吗,它在电源设计和仿真中的意义是什么?

扫码关注微信号|高速先生

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
0468.500NRHF 1 Littelfuse Inc Electric Fuse, Slow Blow, 0.5A, 63VAC, 63VDC, 50A (IR), Surface Mount, 1206, HALOGEN FREE AND ROHS COMPLIANT
$1.34 查看
KSS341GLFS 1 ITT Interconnect Solutions Keypad Switch, 1 Switches, SPST, Momentary-tactile, 0.05A, 32VDC, 4N, Solder Terminal, Surface Mount-right Angle, ROHS COMPLIANT
$1.28 查看
ADS1262IPW 1 Texas Instruments 32-bit 38-kSPS 10-ch delta-sigma ADC with PGA and voltage reference for factory automation 28-TSSOP -40 to 125

ECAD模型

下载ECAD模型
$25.91 查看

相关推荐

电子产业图谱