Do you know what goes into developing an #LLM?
你知道开发一个大型语言模型需要涉及什么吗?
LLMs are the backbone of our GenAI applications and it is very important to understand what goes into creating these LLMs.
大型语言模型是生成式人工智能应用的支柱,理解创建这些大型语言模型需要什么是非常重要的。
Just to give you an idea, here is a very basic setup and it involves 3 stages.Here are the different stages of building an LLM.
为了让你有个概念,下面有一个非常基本的介绍,以下是构建一个大型语言模型的三个不同阶段。
Stage 1: Building(构建)
Stage 2: Pre-training(预训练)
Stage 3: Finetuning(微调)
⮕ Building Stage(构建阶段):
⦿ Data Preparation: Involves collecting and preparing datasets.
⦿ 数据准备:包括收集和准备数据集。
⦿ Model Architecture: Implementing the attention mechanism and overall architecture
⦿ 模型架构:实施注意力机制和整体架构。
⮕ Pre-Training Stage:
⦿ Training Loop: Using a large dataset to train the model to predict the next word in a sentence.
⦿ 训练循环:使用一个大型数据集来训练模型以预测句子中的下一个单词。
⦿ Foundation Models: The pre-training stage creates a base model for further fine-tuning.
⦿ 基础模型:通过预训练阶段就创建了一个用于进一步微调的基础模型。
⮕ Fine-Tuning Stage( 微调阶段):
⦿ Classification Tasks: Adapting the model for specific tasks like text categorization and spam detection.
⦿ 分类任务:使模型适应特定任务,如文本分类和垃圾邮件检测。
⦿ Instruction Fine-Tuning: Creating personal assistants or chatbots using instruction datasets.
⦿ 指令微调:使用指令数据集创建个人助手或聊天机器人。
Modern LLMs are trained on vast datasets, with a trend toward increasing the size for better performance.
现代大型语言模型是在庞大的数据集上进行训练的,有一种趋势是为了获得更好的性能而增加模型规模(大小)。
The above explained process is just the tip of the iceberg but its a very complex process that goes into building an LLM. It takes hours to explain this but just know that developing an LLM involves gathering massive text datasets, using self-supervised techniques to pretrain on that data, scaling the model to have billions of parameters, leveraging immense computational resources for training, evaluating capabilities through benchmarks, fine-tuning for specific tasks, and implementing safety constraints.
上面解释的过程只是冰山一角,构建一个大型语言模型是一个非常复杂的过程。这需要几个小时来解释,但要知道开发一个大型语言模型涉及收集大量文本数据集,使用自监督技术在该数据上进行预训练,将模型扩展到拥有数十亿,数百亿个参数,利用巨大的计算资源进行训练,通过基准测试评估能力,针对特定任务进行微调,并实施安全约束。