• 正文
  • 推荐器件
  • 相关推荐
申请入驻 产业图谱

阿里云天池大赛赛题(深度学习)——人工智能辅助构建知识图谱(完整代码)

2024/05/02
1941
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论
# 导入所需文件
import numpy as np
from sklearn.model_selection import ShuffleSplit
from data_utils import ENTITIES, Documents, Dataset, SentenceExtractor, make_predictions
from data_utils import Evaluator
from gensim.models import Word2Vec
# 数据文件读取
data_dir = "./data/train"
ent2idx = dict(zip(ENTITIES, range(1, len(ENTITIES) + 1)))
idx2ent = dict([(v, k) for k, v in ent2idx.items()])
# 训练集,测试集切分与打乱
docs = Documents(data_dir=data_dir)
rs = ShuffleSplit(n_splits=1, test_size=20, random_state=2018)
train_doc_ids, test_doc_ids = next(rs.split(docs))
train_docs, test_docs = docs[train_doc_ids], docs[test_doc_ids]
# 模型参数赋值
num_cates = max(ent2idx.values()) + 1
sent_len = 64
vocab_size = 3000
emb_size = 100
sent_pad = 10
sent_extrator = SentenceExtractor(window_size=sent_len, pad_size=sent_pad)
train_sents = sent_extrator(train_docs)
test_sents = sent_extrator(test_docs)

train_data = Dataset(train_sents, cate2idx=ent2idx)
train_data.build_vocab_dict(vocab_size=vocab_size)

test_data = Dataset(test_sents, word2idx=train_data.word2idx, cate2idx=ent2idx)
vocab_size = len(train_data.word2idx)
# 构建词嵌入模型
w2v_train_sents = []
for doc in docs:
    w2v_train_sents.append(list(doc.text))
w2v_model = Word2Vec(w2v_train_sents, size=emb_size)

w2v_embeddings = np.zeros((vocab_size, emb_size))
for char, char_idx in train_data.word2idx.items():
    if char in w2v_model.wv:
        w2v_embeddings[char_idx] = w2v_model.wv[char]
# 构建双向长短时记忆模型模型加crf模型
import keras
from keras.layers import Input, LSTM, Embedding, Bidirectional
from keras_contrib.layers import CRF
from keras.models import Model


def build_lstm_crf_model(num_cates, seq_len, vocab_size, model_opts=dict()):
    opts = {
        'emb_size': 256,
        'emb_trainable': True,
        'emb_matrix': None,
        'lstm_units': 256,
        'optimizer': keras.optimizers.Adam()
    }
    opts.update(model_opts)

    input_seq = Input(shape=(seq_len,), dtype='int32')
    if opts.get('emb_matrix') is not None:
        embedding = Embedding(vocab_size, opts['emb_size'], 
                              weights=[opts['emb_matrix']],
                              trainable=opts['emb_trainable'])
    else:
        embedding = Embedding(vocab_size, opts['emb_size'])
    x = embedding(input_seq)
    lstm = LSTM(opts['lstm_units'], return_sequences=True)
    x = Bidirectional(lstm)(x)
    crf = CRF(num_cates, sparse_target=True)
    output = crf(x)

    model = Model(input_seq, output)
    model.compile(opts['optimizer'], loss=crf.loss_function, metrics=[crf.accuracy])
    return model
# 双向长短时记忆模型+CRF条件随机场实例化
seq_len = sent_len + 2 * sent_pad
model = build_lstm_crf_model(num_cates, seq_len=seq_len, vocab_size=vocab_size, 
                             model_opts={'emb_matrix': w2v_embeddings, 'emb_size': 100, 'emb_trainable': False})
model.summary()
# 训练集,测试集形状
train_X, train_y = train_data[:]
print('train_X.shape', train_X.shape)
print('train_y.shape', train_y.shape)
# 双向长短时记忆模型与条件随机场模型训练
model.fit(train_X, train_y, batch_size=64, epochs=10)
# 模型预测
test_X, _ = test_data[:]
preds = model.predict(test_X, batch_size=64, verbose=True)
pred_docs = make_predictions(preds, test_data, sent_pad, docs, idx2ent)
# 输出评价指标
f_score, precision, recall = Evaluator.f1_score(test_docs, pred_docs)
print('f_score: ', f_score)
print('precision: ', precision)
print('recall: ', recall)
# 测试样本展示
sample_doc_id = list(pred_docs.keys())[3]
test_docs[sample_doc_id]
# 测试结果展示
pred_docs[sample_doc_id]

以上代码全部来自于《阿里云天池大赛赛题解析(深度学习篇)》这本好书,十分推荐大家去阅读原书!

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
FOD817C300W 1 Fairchild Semiconductor Corporation 4-Pin DIP Phototransistor Optocouplers, 4LD, MDIP, .300" WIDE, 10.16MM LEADSPREAD FORM,OVER-UNDER, 2000/BOX
$0.23 查看
FTLX8574D3BCV 1 Finisar Corporation Transceiver,
$254.03 查看
CSTCC4M00G56-R0 1 Murata Manufacturing Co Ltd Ceramic Resonator, 4MHz Nom, CERAMIC PACKAGE-3
$0.97 查看

相关推荐