加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 全代码
    • 总结
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

纯手撸一个神经网络(只用numpy识别mnist数据集,全代码)

11/21 13:22
665
阅读需 18 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

全代码

纯手撸一个识别mnist手写数据集的2层DNN网络,所有库函数的低层NumPy代码都已给出,这串代码直接运行就能跑!不需要其他文件。

如果没装TensorFlow和matplotlib的童鞋可以在终端输入 pip install tensorflowpip install matplotlib 进行安装。

import numpy as np
import matplotlib.pylab as plt
import tensorflow as tf #引入tensorflow只是为了导入mnist数据集

#下面一大段都是定义函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def sigmoid_grad(x):
    return (1.0 - sigmoid(x)) * sigmoid(x)


def relu(x):
    return np.maximum(0, x)


def relu_grad(x):
    #grad = np.zeros(x)
    #grad[x>=0] = 1
    x = np.where(x>=0,1,0)
    return x


def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)  # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))


def mean_squared_error(y, t):
    return 0.5 * np.sum((y - t) ** 2)


def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


def softmax_loss(X, t):
    y = softmax(X)
    return cross_entropy_error(y, t)


def numerical_gradient(f, x):
    h = 1e-4  # 0.0001
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()

    return grad



class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

    def predict(self, x):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']

        a1 = np.dot(x, W1) + b1
        #z1 = sigmoid(a1)
        z1 = relu(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)

        return y

    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)

        return cross_entropy_error(y, t)

    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        t = np.argmax(t, axis=1)

        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy

    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)

        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])

        return grads

    def gradient(self, x, t):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
        grads = {}

        batch_num = x.shape[0]

        # forward
        a1 = np.dot(x, W1) + b1
        #z1 = sigmoid(a1)
        z1 = relu(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)

        # backward
        dy = (y - t) / batch_num
        grads['W2'] = np.dot(z1.T, dy)
        grads['b2'] = np.sum(dy, axis=0)

        da1 = np.dot(dy, W2.T)
        #dz1 = sigmoid_grad(a1) * da1
        dz1 = relu_grad(a1) * da1
        grads['W1'] = np.dot(x.T, dz1)
        grads['b1'] = np.sum(dz1, axis=0)

        return grads


def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1

    return T

#开搞
# 读入数据
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0 #归一化
x_train = x_train.reshape(-1,784)  # flatten, (60000,28,28)变(60000,784)
x_test = x_test.reshape(-1,784)  # flatten, (10000,28,28)变(10000,784)
y_train = _change_one_hot_label(y_train) #标签变独热码,才能和前向传播softmax之后的结果维度匹配,才能相减算误差
y_test = _change_one_hot_label(y_test) #标签变独热码

#两层DNN(隐藏层50个神经元,784*50*10),激活函数是relu,可自己改成sigmoid,损失函数是交叉熵误差,输出层是softmax,优化函数是SGD
network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

#超参数设置
iters_num = 10000
train_size = x_train.shape[0]
batch_size = 512
learning_rate = 0.05

train_loss_list = []
train_acc_list = []
test_acc_list = []

iter_per_epoch = max(train_size / batch_size, 1)

#训练
for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    y_batch = y_train[batch_mask]

    # 梯度
    # grad = network.numerical_gradient(x_batch, t_batch)
    grad = network.gradient(x_batch, y_batch)

    # 更新
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]

    loss = network.loss(x_batch, y_batch)
    train_loss_list.append(loss)

    #每一个epoch打印训练和测试的准确率
    if i % iter_per_epoch == 0:
        train_acc = network.accuracy(x_train, y_train)
        test_acc = network.accuracy(x_test, y_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print(train_acc, test_acc)

# 绘制 loss 曲线
plt.subplot(1,2,1)
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Step')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_list, label="$Loss$")  # 逐点画出loss值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标

# 绘制 Accuracy 曲线
plt.subplot(1,2,2)
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(train_acc_list, label="$train_{acc}$")  # 逐点画出train_acc值并连线
plt.plot(test_acc_list, label="$test_{acc}$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

在这里插入图片描述

总结

简单的两层网络(W个数:784*50+50*10,b个数:50+10),就能实现95%的准确率,且没有过拟合。

batch_size调大一点loss就不会这么震荡,训练周期长一点acc会更大,学习率越大训练越快,但太大会跑飞,都可以调来玩玩。

上面的激活函数是选了relu,可自己改成sigmoid,代码里relu换成sigmoid就行,事实证明是relu好一点。

上面的优化器是SGD(随机梯度下降),还有Momentum、AdaGrad、Adam等等,一般用Adam会有更好效果。

所以可以总结神经网络学习全貌:

前提

神经网络存在合适的权重和偏置,调整权重和偏置以便拟合训练数据的

过程称为“学习”。神经网络的学习分成下面4个步骤。

步骤1(mini-batch)

从训练数据中随机选出一部分数据,这部分数据称为mini-batch。我们

的目标是减小mini-batch的损失函数的值。

步骤2(计算梯度)

为了减小mini-batch的损失函数的值,需要求出各个权重参数的梯度。

梯度表示损失函数的值减小最多的方向。

步骤3(更新参数)

将权重参数沿梯度方向进行微小更新。

步骤4(算误差、精度)

每次循环都算一下误差,若到一次epoch,算一下精度。

步骤5(重复)

重复步骤1、步骤2、步骤3、步骤4。

更多深度学习入门内容可以看看这篇哦《一文极速理解深度学习》

相关推荐

电子产业图谱