加入星计划,您可以享受以下权益:

  • 创作内容快速变现
  • 行业影响力扩散
  • 作品版权保护
  • 300W+ 专业用户
  • 1.5W+ 优质创作者
  • 5000+ 长期合作伙伴
立即加入
  • 正文
    • 布局比较
    • EMI比较
    • 热比较
    • 结论
  • 推荐器件
  • 相关推荐
  • 电子产业图谱
申请入驻 产业图谱

单热回路 or 双热回路?这是个问题~

2023/08/10
1991
阅读需 11 分钟
加入交流群
扫码加入
获取工程师必备礼包
参与热点资讯讨论

汽车应用电路必须满足严格的EMI标准,以避免干扰广播和移动服务频段。在很多情况下,Silent Switcher®和Silent Switcher 2解决方案在满足这些标准方面可以发挥重要作用。但是,在任何情况下,都必须要精心布局。本文专门讨论4开关降压-升压型控制器的两种可能解决方案,并比较EMI室的测量结果。

4开关降压-升压转换器将降压和升压控制器结合在单个IC中,当输出低于输入时,转换器用作降压器;当输出高于输入时,转换器用作升压器。在输出和输入接近的区域中,所有四个开关都可以工作。

功率产品研究团队利用ADI公司位于加州圣克拉拉的内部EMI室,对原始双热回路同步布局的有效性进行了研究,看看能否使用替代布局来降低EMI噪声以通过EMI标准。

双热回路布局要求将热回路陶瓷电容对称放置在功率MOSFET周围,以遏制EMI噪声。ADI公司独特的检测电阻位置——在电感旁边且在热回路外部——使得这些回路可以非常小,从而最大限度地降低热回路的天线效应。为了实现这种对称性并使开关节点能够到达附近的电感,需要开关节点过孔,而这可能会影响热回路区域。研究团队利用符合CISPR
25标准的EMI室发现,裸露的开关节点和较大热回路面积会产生干扰性传导EMI,尤其是在>30
MHz(FM无线电频带)时,这是最难衰减的频率范围。

对于具有单个热回路的原始降压-升压布局,通过重新布置功率MOSFET和热回路电容可以改善其最小热回路。这种布局称为单热回路,与之相对应的是双热回路。使用单个热回路的好处是不仅开关损耗较小,而且能够衰减>30MHz的传导发射(CE),因为热回路面积和开关节点的裸露部分已最小化。其有效性已通过如下方式得到验证:使用相同的控制器IC和相同的功率器件,比较新布局与双热回路布局的EMI噪声。实验使用了一个4个开关降压-升压控制器 LT8392及其两种版本的演示电路(DC2626A rev.2和rev.3)。

布局比较

图1显示了双热回路和单热回路的布局与装配板照片。每个板都有四层:顶层(第1层)、第2层、第3层和底层(第4层)。但是,图中仅显示了顶层和底层。如图1(a)所示,热回路电容位于中心MOSFET的左侧和右侧,形成相同的热回路。开关节点过孔用于通过底层(如图1(c)所示)和第3层将开关节点SW1和SW2连接到主电源电感。SW1和SW2顶层铜节点采用大面积布局,以耗散电感和MOSFET的热量。但同时,大部分裸露的SW1和SW2铜节点成为EMI辐射源。如果电路板安装在底盘接地附近,则底盘和开关节点铜之间会形成寄生电容。它使高频噪声从开关节点流到底盘接地,影响系统中的其他电路。在符合CISPR 25标准的EMI室中,高频噪声流过EMI设置和LISN的接地台。裸露的交换节点还会充当天线,引起辐射EMI噪声。

然而,单热回路在底层没有裸露的开关节点铜,如图1(d)所示。在图1(b)所示的顶层,热回路电容仅放置在MOSFET的一侧,这使得开关节点可以连接到电感而无需使用开关节点过孔。

图1.双热回路和单热回路的布局与照片

在单热回路布局中,顶部和底部MOSFET不对齐,但其中一个旋转90°以使热回路尽可能小。图1(e)和图1(f)中的黄色高亮框比较了双热回路与单热回路的热回路大小。这些框表明,单热回路的热回路为双热回路的一半。

应当注意,图1(a)所示的双热回路的两个0402热回路电容未被使用,并且1210热回路电容被挤压到MOSFET以使热回路最小。

剥离0402电容焊盘附近的阻焊层,以使1210电容连接良好。另外,电感焊盘附近的阻焊层被移除,以在单热回路电路中使用该同一电感。热回路越小,意味着回路的总电感越小。因此,开关损耗得以减少,开关节点和开关电流的LC振铃也得以衰减。另外,较小的回路有助于降低30
MHz以上的传导EMI,因为电磁辐射骚扰会影响该范围内的传导EMI。

ADI公司的专有峰值降压/峰值升压电流模式控制方案使得4开关降压-升压控制器可以形成最小的热回路。电流检测电阻与主电感串联。相比之下,竞争对手的控制器使用谷值降压/峰值升压电流模式控制方案,其中电流检测电阻应放在底部MOSFET的源极和地之间。图2显示了此类器件之一的推荐降压-升压布局。如黄框所示,热回路大于双热回路或单热回路。此外,检测电阻的寄生电感增加了热回路的总电感。

图2.竞争器件LM5176的推荐降压-升压布局

EMI比较

双热回路和单热回路的EMI是在符合CISPR 25标准的EMI室中测量,结果显示于图3中。图3还给出了CISPR 25 Class5标准限值。EMI结果绘制在同一图中以比较差异,双热回路用黄线标示,单热回路用红线标示。灰线是在环境条件下测得的本底噪声。如图4所示,双热回路的底层的裸露开关节点用铜带屏蔽接地,以显示该较小热回路的效果如何。没有铜屏蔽的双热回路的辐射远高于图3中的结果。输出为12V、8 A,输入电压设置为13 V,以使电路工作在4开关切换模式。

图3.双热回路和单热回路的EMI比较曲线:(a) 电压法传导发射峰值和均值,(b) 电流探针法传导发射50 mm峰值和均值,(c) 电流探针法传导发射750 mm峰值和均值,(d) 辐射发射垂直峰值和均值。

图3(a)分别显示了电压法传导发射的峰值和均值。单热回路在30 MHz以上的CE要低5 dBμV,满足CISPR 25 Class 5标准对峰值和均值CE的要求,而双热回路在FM和VHF频段(68 MHz至约108 MHz)的均值有过冲,如黄色高亮框所示。

请注意,在该频率范围内降低5 dbμv非常有挑战性。单热回路不仅在30MHz的高频范围(这是最难衰减的区域)有效,在包括AM频段(0.53 MHz至约1.8 MHz)的低频(<2MHz)范围也有效。辐射总是越低越好,尤其是当其为CE时,因为这会影响所有电连接的系统。

电流探针方法是CISPR 25 Class 5指定的另一种测量方法。它在距离DUT 50 mm和750mm的两个不同位置测量共模传导发射,而电压方法测量共模和差模的混合传导发射。图3(b)和3(c)比较了双热回路和单热回路的电流探针法传导发射。结果表明,单热回路在30MHz以上(尤其是FM频段)具有更低的传导发射,如黄色高亮框所示。与电压法传导发射不同,在AM频段周围的低频处,单热回路相对于双热回路没有显着优势。

图4.双热回路的底层的屏蔽开关节点

最后,图3(d)显示了两种不同降压-升压布局的辐射发射(RE)。结果几乎相同,不过双热回路的尖峰在大约90 MHz时,比单热回路高5 dbμv/m。

热比较

图5显示了双热回路和单热回路的热比较。热图像是在9.4 V输入电压和SSFM开启的情况下测得。9.4V是4开关工作区域的最低点,此后工作模式切换到输出电压为12V的2开关纯升压模式。因此,测试条件最为恶劣。双热回路的最热元件、升压侧底部MOSFET和单热回路的温度几乎相同。虽然单热回路的底层没有可以散热的开关节点通孔和铜,但由于热回路较小,其开关损耗低于双热回路。另外,不使用开关节点过孔使得单热回路的顶层能够更好地散热,因为MOSFET漏极焊盘和开关节点铜的接触面积大于双热回路的接触面积。

结论

新的高功率设计建议使用新型单热回路降压-升压布局。由于开关节点的裸露部分和热回路面积极小,单热回路具有降低传导和辐射发射的明显优势,而不存在任何散热缺点。值得注意的是,它能降低30MHz以上的传导发射,这是最难衰减的频率区域。由于ADI公司的4开关降压-升压控制器(LT8390/LT8390A、LT8391/LT8391A、LT8392、LT8393、LT8253等)具备专有峰值降压/峰值升压电流模式控制特性,因此热回路可以做得比竞争器件的热回路小很多。该控制特性导致效率更高而EMI更低,使得ADI公司的4开关降压-升压控制器成为汽车应用或任何EMI敏感应用的出色选择。

图5.(a) 双热回路的热图像,(b) 单热回路的热图像。

推荐器件

更多器件
器件型号 数量 器件厂商 器件描述 数据手册 ECAD模型 风险等级 参考价格 更多信息
MAX13487EESA+T 1 Maxim Integrated Products Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOIC-8
$4.27 查看
1000B-5001XNL 1 Pulse Electronics Corporation Datacom Transformer, 10/100/1000 BASE-T Application(s), 1:1, ROHS COMPLIANT
暂无数据 查看
MS614SE-FL28E 1 ABLIC Inc Secondary Battery, Lithium, 614, 3V, 0.0034Ah, 0.015mA,
$2.1 查看
ADI

ADI

亚德诺半导体全称为亚德诺半导体技术有限公司(analog devices,inc.)简称ADI。是一家专营半导体传感器和信号处理ic的卓越的供应商,ADI将创新、业绩和卓越作为企业的文化支柱,并基此成长为该技术领域最持久高速增长的企业之一。ADI是业界卓越的半导体公司,在模拟信号、混合信号和数字信号处理的设计与制造领域都发挥着十分重要的作用。

亚德诺半导体全称为亚德诺半导体技术有限公司(analog devices,inc.)简称ADI。是一家专营半导体传感器和信号处理ic的卓越的供应商,ADI将创新、业绩和卓越作为企业的文化支柱,并基此成长为该技术领域最持久高速增长的企业之一。ADI是业界卓越的半导体公司,在模拟信号、混合信号和数字信号处理的设计与制造领域都发挥着十分重要的作用。收起

查看更多

相关推荐

电子产业图谱

Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。