无论是CAN总线还是485总线,实际应用中经常会出现各种异常,常因总线组网后,波形边沿出现过缓、呈“镰刀”状的现象,导致数据丢失或出错,那么这现象前因后果大家是否真正的了解呢?
案例一
1. CAN总线异常现象
我司某工业机器人客户反馈,使用SM1500的机器人控制板卡,在传输数据过程中出现丢帧的情况,如下图1,客户现场模拟的组网方式为31个节点的手拉手拓扑,通讯波特率为250kbps。
图1 现场组网环境
若总线收发器在使用过程中出现异常,一般会先从总线波形着手去分析原因。如图2,为客户组网的简要框图,我司使用CAN分析仪抓取了第31个节点处总线波形,发现波形边沿过缓,出现了“镰刀”状的现象,如下图3。
图2 控制板卡组网简要框图
图3 CAN总线“镰刀”波形
总线波形出现“镰刀”状的现象通常是由于总线上存在过大电容起的,根据电容的充放电时间公式可知t=RC,其中R可看成总线接口内阻与终端电阻,C则是总线上的等效电容。
如图4,总线等效电容Cj包括总线引脚对地电容Cj1与总线之间的电容Cj2,当总线电平由高变低时(压差变化),由于电容上的电压不能突变,那么电容Cj会分别通过内阻R内和终端电阻R终端放电。收发器内阻和终端电阻一般固定,当电容过大时,则放电时间变长,从而导致了总线波形边沿变缓。
图4 总线等效电容放电原理框图
2. CAN接口电路原理与异常分析
SM1500 CAN接口电容一般只有几皮法,即使31个节点组网最多也不过上百皮法,配合终端电阻使用一般不会出现“镰刀”状波形。我司在检查客户CAN接口电路后发现存在TVS管、气体放电管等保护器件,如下图5。TVS管本身存在较大的结电容,一般在几百到上千皮法,当总线组网后结电容会累计增加,高速通讯的时候总线就有可能出现“镰刀”状波形。
图5 控制板卡CAN接口保护电路将总线接口保护电路的TVS3和TVS4去掉后组网,并测试第31个节点处波形发现仍呈“镰刀”状,但波形边沿迟缓程度减小,如图6,同时也没有再出现丢帧情况。最后再去掉TVS2后测试,“镰刀”状波形消失,如图7。对比去掉TVS管前后波形,边沿时间由1.3us减小至160ns,如图8。
图6 去掉部分TVS管后总线波形
图7 去掉全部TVS管后总线波形
图8 去掉TVS管前后波形边沿时间对比
案例二
1. 485总线异常现象
我司某灯光设备客户反馈,使用SM4500的灯光具设备以手拉手方式组网后,在进行程序烧写时,出现了部分设备无法烧录程序的情况,组网简要框图如图9所示。
图9 灯具设备组网简要框图通讯波特率为250kbps,如图10为10台灯具设备组网后总线波形,从波形看,和案例一相似,也呈“镰刀”状。
图10 485总线“镰刀”波形
2. 485总线接口电路原理与异常分析
设备接口原理如图11,客户在A、B线外加了1nF的电容C3、C4,当多个设备组网后,总线上电容必然会随着节点数的增多而增大,不仅起不到消除干扰作用,反而导致了波形失真。
图11 灯具设备485接口保护电路为了确认是否是总线外接电容的影响,我司用13台去掉了电容的设备组网,并测试第13节点处波形,总线“镰刀”状波形消失,如图12左图,但波形存在尖峰,我司判断这由于信号反射导致,给第13台设备端接入120Ω终端电阻后,尖峰消失,如图12右图。
图12 接入终端电阻前后波形对比
应用推荐
经过上述案例分析,可以知道,不管是CAN总线还是485总线,对电容都是非常敏感的,尤其是在高速通讯的时候。SM1500和SM4500本身就具有良好的EMC防护能力,裸机状态下,静电放电抗扰度满足IEC/EN 61000-4-2Contact ±6KV;脉冲群抗扰度满足IEC/EN 61000-4-4 ±2KV;雷击浪涌抗扰度满足IEC/EN 61000-4-5 共模±2KV。
实际应用中,适当的保护还是需要的,当需要增加防护器件时,需特别关注寄生电容的影响,尽可能选小电容器件。如图13,为我司推荐的常用接口防护电路,该电路寄生电容可控制在十几皮法左右,不仅满足高速通讯的需求,同时浪涌防护能力可达到IEC/EN 61000-4-5共模 ±4KV,差模 ±2kV的要求,如表1,给出了一组推荐的器件参数,参数值仅做参考,用户需根据实际情况来确定适当的值。
图13 总线常用接口保护电路
表1
标号 | 型号 | 标号 | 型号 |
C2 | 102,2kV | TVS2 | SMBJ15CA |
R1 | 1MΩ,1206 | GDT | 3RL090M-5-S |
R2 | 120Ω,1206 | T1 | HR600432,51uH |
R3,R4 | SMD1812P014TF | D1~D6 | HFM107 |
CON1 | 短路器 | U1 | SM系列总线隔离收发器 |