TA的每日心情 | 开心 2018-6-10 20:29 |
---|
签到天数: 711 天 连续签到: 1 天 [LV.9]以坛为家II
|
本帖最后由 IC爬虫 于 2017-1-8 17:58 编辑
我现在正在使用UP Board发帖!!!!!!!!!!!!!!!!
tensorflow的优势是非常简单就能构建对大型数据的的训练,但是这只是它众多亮点中的一个。在训练大规模数据的时候库可以使用多种模型,我分别测试了使用softmax回归模型和深度神经网络模型对数据训练,再对比这两种模型训练出来的精度。
使用softmax回归模型:- import tensorflow as tf
- import numpy as np
- import input_data
- mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- sess = tf.InteractiveSession()
- x = tf.placeholder("float", shape=[None, 784])
- y_ = tf.placeholder("float", shape=[None, 10])
- W = tf.Variable(tf.zeros([784,10]))
- b = tf.Variable(tf.zeros([10]))
- sess.run(tf.initialize_all_variables())
- y = tf.nn.softmax(tf.matmul(x,W) + b)
- cross_entropy = -tf.reduce_sum(y_*tf.log(y))
- train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
- for i in range(1000):
- batch = mnist.train.next_batch(50)
- train_step.run(feed_dict={x: batch[0], y_: batch[1]})
- correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})
复制代码 计算出在测试数据上的准确率,大概是91%
深度卷积网络:- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- x_image = tf.reshape(x, [-1,28,28,1])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- W_fc1 = weight_variable([7 * 7 * 64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- keep_prob = tf.placeholder("float")
- h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- sess.run(tf.initialize_all_variables())
- for i in range(20000):
- batch = mnist.train.next_batch(50)
- if i%100 == 0:
- train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
- print "step %d, training accuracy %g"%(i, train_accuracy)
- train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
- print "test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
复制代码 在最终测试集上的准确率大概是99.2%。
|
|