TA的每日心情 | 奋斗 2016-8-15 09:28 |
---|
签到天数: 222 天 连续签到: 1 天 [LV.7]常住居民III
|
1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点
无法抑制那种周期性的干扰
平滑度差
2、中位值滤波法
A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜
3、算术平均滤波法
A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM
6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
比较浪费RAM
7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号
8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
B、优点:
适用于有较大纯滞后时间常数的对象
和采样周期较短的系统
C、缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
B、优点:
对于变化缓慢的被测参数有较好的滤波效果,
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
C、缺点:
对于快速变化的参数不宜
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
10、限幅消抖滤波法
A、方法:
相当于“限幅滤波法”+“消抖滤波法”
先限幅,后消抖
B、优点:
继承了“限幅”和“消抖”的优点
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
C、缺点:
对于快速变化的参数不宜
第11种方法:IIR 数字滤波器
A. 方法:
确定信号带宽, 滤之。
Y(n) = a1*Y(n-1) + a2*Y(n-2) + ... + ak*Y(n-k) + b0*X(n) + b1*X(n-1) + b2*X(n-2) + ... + bk*X(n-k)
B. 优点:高通,低通,带通,带阻任意。设计简单(用matlab)
C. 缺点:运算量大。
//---------------------------------------------------------------------
软件滤波的C程序样例
11种软件滤波方法的示例程序
假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();
1、限副滤波
#define A 10 //设置两次采样允许的最大偏差值
char value; //上次采用后的有效值变量
char filter_1(void){
char new_value; //本次采样值变量
new_value=get_ad(); //读入本次采样值
if((new_value-value>A)||(value-new_value>A)) //比较是否超出最大偏差值
return value; //如果超出,返回上次的有效值作为本次的有效值
return new_value;// 如果没有超出,返回本次的采样值作为本次的有效值
}
2、中位值滤波法
#define N 11 //设置连续采样的次数
char filter_2(void){
char value_buf[N]; //缓存N次采样值的存储变量
char count,i,j,temp; //i,j是冒泡排序的下标变量,count是采样数据读入的下标变量
//temp是临时变量
for(count=0;count<N;count++) //连续读入N个采样值
{
value_buf[count]=get_ad();
delay();
}
for(j=0;j<N;j++) //气泡排序,由小到大
{
for(i=0;i<N-j;i++)
{
if(value_buf>value_buf[i+1])
{
temp="value"_buf;
value_buf=value_buf[i+1];
value_buf[i+1]=temp;
}
}
}
return value_buf[(N-1)/2]; //将排序后N个采样值的中间值作为最后结果返回
}
3、算术平均滤波法
#undef N
#define N 12 //设置每组参与平均运算的采样值个数
char filter_3(){
int sum="0"; //求和变量,用于存储采样值的累加值
char count;//采样数据读入的下标变量
for(count=0;count<N;count++) //连续读入N个采样值,并累加
{
sum+=get_ad();
delay();
}
return (char)(sum/N); //讲累加值进行平均计算作为返回值
}
4、递推平均滤波法(又称滑动平均滤波法)
#undef N
#define N 12 //设置FIFO队列的长度
char value_buf[N];//FIFO队列变量
char i="0"; //队列的下标变量
char filter_4(){
char count;
int sum="0";
value_buf[i++]=get_ad();
if(i==N) i="0";
for(count=0;count<N;count++)
sum+=value_buf[count];
return(char)(sum/N);
}
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
#undef N
#define N 12 //设置每组采样值的数量
char filter_5()
{
char count,i,j,temp; //i,j是冒泡排序的下标变量,count是采样数据读入的下标变量
char value_buf[N]; // 缓冲N个采样值的存储变量
int sum="0"; //求和变量,用于存储采样值的累加值
for (count=0;count<N;count++) //连续读入N个采样值
{
value_buf[count] = get_ad();
delay();
}
for (j=0;j<N-1;j++) //气泡排序,由小到大
{
for (i=0;i<N-j;i++)
{
if ( value_buf>value_buf[i+1] )
{
temp = value_buf;
value_buf = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
for(count=1;count<N-1;count++)
sum += value_buf[count]; //去掉两端的最小和最大采样值,对中间的N-2个采样值求和
return (char)(sum/(N-2));// 返回中间N-2个采样值的平均值
}
6、限幅平均滤波法
#undef A
#undef N
#define A 10 //设置两次采样允许的最大偏差值
#define N 12 //设置每组参与平均运算的采样值个数
char value; //上次采用后的有效值变量
char filter_6()
{
char new_value; //本次采样值变量
int sum="0"; //求和变量,用于存储采样值的累加值
char count;//采样数据读入的下标变量
for(count=0;count<N;count++)
{
new_value=get_ad(); //读入本次采样值
if((new_value-value>A)||(value-new_value>A)) //比较是否超出最大偏差值
new_value=value; //如果超出,返回上次的有效值作为本次的有效值
sum+=new_value; //累加采样的有效值
value=new_value;
delay();
}
return (char)(sum/N); //将累加值进行平均计算作为返回值
}
7、一阶滞后滤波法
#define COE 50 //定义加权系数
char value; //上一个采样值变量
char filter_7()
{
char new_value; //本次采样值变量
new_value = get_ad();
return (100-COE)*value + COE*new_value; //返回的本次滤波结果
}
8、加权递推平均滤波法
#undef N
#define N 12 //设置FIFO队列的长度
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}; //加权系数
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
char filter_8()
{
char count; //采样数据读入的下标变量
char value_buf[N]; //缓存N个采样值的存储变量
int sum="0"; //求和变量,用于存储采样值的累加值
for (count=0;count<N;count++)
{
value_buf[count] = get_ad(); //读入采样值
delay();
}
for (count=0;count<N;count++)
sum += value_buf[count]*coe[count]; //累加采样值和系数的乘积
return (char)(sum/sum_coe); //累加值与系数和相除作为返回结果
}
9、消抖滤波法
#undef N
#define N 12 //设置计数器溢出值
char filter_9()
{
char count="0"; //计数变量
char new_value; //本次采样值变量
new_value = get_ad(); //读入本次采样值
while (value !=new_value);
{
count++; //计数器加1
if (count>=N) return new_value; //如果本次采样值与当前有效值不相等,
//且计数器溢出,返回本次采样值
delay();
new_value = get_ad();
}
return value; //如果本次采样值与当前有效值相等,则返回当前有效值
}
10、限幅消抖滤波法
#undef A
#undef N
#define A 10 //设置两次采样允许的最大偏差值
#define N 12 //设置计数器溢出值
char value; //有效值变量
char filter_10()
{
char count="0"; //计数变量
char new_value; //本次采样值变量
new_value = get_ad(); //读入本次采样值
if((new_value-value>A)||(value-new_value>A)) //比较是否超出最大偏差值
new_value=value; //如果超出,返回有效值作为本次的采样有效值
while (value !=new_value);
{
count++; //计数器加1
if (count>=N) return new_value; //如果本次采样值与当前有效值不相等,
//且计数器溢出,返回本次采样值
delay();
new_value = get_ad();
}
return value; //如果本次采样值与当前有效值相等,则返回当前有效值
}
11、IIR滤波例子
int BandpassFilter4(int InputAD4)
{
int ReturnValue;
int ii;
RESLO="0";
RESHI="0";
MACS=*PdelIn;
OP2=1068; //FilterCoeff4[4];
MACS=*(PdelIn+1);
OP2=8; //FilterCoeff4[3];
MACS=*(PdelIn+2);
OP2=-2001;//FilterCoeff4[2];
MACS=*(PdelIn+3);
OP2=8; //FilterCoeff4[1];
MACS="InputAD4";
OP2=1068; //FilterCoeff4[0];
MACS=*PdelOu;
OP2=-7190;//FilterCoeff4[8];
MACS=*(PdelOu+1);
OP2=-1973; //FilterCoeff4[7];
MACS=*(PdelOu+2);
OP2=-19578;//FilterCoeff4[6];
MACS=*(PdelOu+3);
OP2=-3047; //FilterCoeff4[5];
*p=RESLO;
*(p+1)=RESHI;
mytestmul<<=2;
ReturnValue=*(p+1);
for (ii=0;ii<3;ii++)
{
DelayInput[ii]=DelayInput[ii+1];
DelayOutput[ii]=DelayOutput[ii+1];
}
DelayInput[3]=InputAD4;
DelayOutput[3]=ReturnValue;
// if (ReturnValue<0)
// {
// ReturnValue=-ReturnValue;
// }
return ReturnValue;
}
|
|