查看: 1006|回复: 0

[经验] 飞凌嵌入式ElfBoard ELF 1板卡-如何移植NCNN

[复制链接]

该用户从未签到

发表于 2024-5-29 08:41:51 | 显示全部楼层 |阅读模式
分享到:
本帖最后由 eefocus_3944881 于 2024-5-29 08:47 编辑

在计算机视觉和深度学习领域,NCNN(Netural Network Computer Vision)是一个轻量级的神经网络计算框架,被广泛应用于各类嵌入式设备和移动平台。今天,让我们一同跟随共创社团队的步伐,揭秘他们如何进行NCNN的交叉编译,并在ELF 1开发板上演绎实践,以此验证模型推理性能。

1.从GitHub下载NCNN源码:https://github.com/Tencent/ncnn
图片1.png

2.将ncnn-master.zip拷贝到开发环境的/home/elf/work目录下并解压:
elf@ubuntu:~/work$ unzip ncnn-master.zip

3.配置cmake:
elf@ubuntu:~/work$ cd ncnn-master/toolchains/
elf@ubuntu:~/work/ncnn-master/toolchains$ vi arm-poky-linux-gnueabi.cmake
将下面的内容添加到arm-poky-linux-gnueabi.cmake文件中:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_C_COMPILER "arm-poky-linux-gnueabi-gcc")
set(CMAKE_CXX_COMPILER "arm-poky-linux-gnueabi-g++")
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set(CMAKE_C_FLAGS "-march=armv7-a -mfloat-abi=hard  --sysroot=/opt/fsl-imx-x11/4.1.15-2.0.0/sysroots/cortexa7hf-neon-poky-linux-gnueabi")

set(CMAKE_CXX_FLAGS "-march=armv7-a -mfloat-abi=hard --sysroot=/opt/fsl-imx-x11/4.1.15-2.0.0/sysroots/cortexa7hf-neon-poky-linux-gnueabi")

# cache flags
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS}" CACHE STRING "c flags")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}" CACHE STRING "c++ flags")
图片2.png

4.编译:
elf@ubuntu:~/work/ncnn-master$ mkdir build
elf@ubuntu:~/work/ncnn-master$ cd build/
elf@ubuntu:~/work/ncnn-master/build$ . /opt/fsl-imx-x11/4.1.15-2.0.0/environment-setup-cortexa7hf-neon-poky-linux-gnueabi
elf@ubuntu:~/work/ncnn-master/build$ cmake -DCMAKE_TOOLCHAIN_FILE=../toolchains/arm-poky-linux-gnueabi.cmake -DNCNN_SIMPLEOCV=ON -DNCNN_BUILD_EXAMPLES=ON -DCMAKE_BUILD_TYPE=Release ..
elf@ubuntu:~/work/ncnn-master/build$ make

5.将编译完成得到的benchmark文件夹(build目录下)和项目文件夹下的benchmark文件夹打包并放到U盘里:
elf@ubuntu:~/work/ncnn-master/build$ tar cvjf benchmark.tar.bz2 benchmark/ ../benchmark/

6.将U盘插入到开发板上,拷贝压缩包到/home/root路径下并解压:
root@ELF1:~# cp /run/media/sda1/benchmark.tar.bz2 .
root@ELF1:~# tar xvf benchmark.tar.bz2

7.测试:
root@ELF1:~# cd benchmark/
root@ELF1:~/benchmark# ./benchncnn
图片3.png
观察结果显示,绝大部分模型均已成功运行,其中所展示的数字指标代表了各自的执行耗时。需注意,数值越小,意味着推理过程的完成速度越快。

通过这次实践,共创社不仅展示了NCNN在嵌入式设备上的灵活性与强大性能,还向我们揭示了深度学习嵌入式技术落地的无限可能,更激励着每一位嵌入式探索者:无论面对何种挑战,只要勇于探索、精于实践,便能在嵌入式技术的海洋中乘风破浪,开辟出一片属于自己的天地。

回复

使用道具 举报

您需要登录后才可以回帖 注册/登录

本版积分规则

关闭

站长推荐上一条 /3 下一条



手机版|小黑屋|与非网

GMT+8, 2025-1-20 05:45 , Processed in 0.121917 second(s), 17 queries , MemCache On.

ICP经营许可证 苏B2-20140176  苏ICP备14012660号-2   苏州灵动帧格网络科技有限公司 版权所有.

苏公网安备 32059002001037号

Powered by Discuz! X3.4

Copyright © 2001-2024, Tencent Cloud.