查看: 2096|回复: 0

[原创] 【ZYNQ Ultrascale+ MPSOC FPGA教程】第三十二章 PL读写PS端DDR数据

[复制链接]
  • TA的每日心情
    开心
    2021-1-12 14:00
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

    发表于 2021-1-29 10:19:00 | 显示全部楼层 |阅读模式
    分享到:
    本原创教程由芯驿电子科技(上海)有限公司(ALINX)创作,版权归本公司所有,如需转载,需授权并注明出处。
    适用于板卡型号:
    AXU2CGA/AXU2CGB/AXU3EG/AXU4EV-E/AXU4EV-P/AXU5EV-E/AXU5EV-P /AXU9EG/AXU15EG

    实验Vivado工程目录为“pl_read_write_ps_ddr/vivado”。
    实验vitis工程目录为“pl_read_write_ps_ddr /vitis”。
    PL和PS的高效交互是zynq soc开发的重中之重,我们常常需要将PL端的大量数据实时送到PS端处理,或者将PS端处理结果实时送到PL端处理,常规我们会想到使用DMA的方式来进行,但是各种协议非常麻烦,灵活性也比较差,本节课程讲解如何直接通过AXI总线来读写PS端ddr的数据,这里面涉及到AXI4协议,vivado的FPGA调试等。
    FPGA工程师工作内容
    以下为FPGA工程师负责内容。
    1. ZYNQ的HP端口使用
    zynq 7000 SOC的HP口是 High-Performance Ports的缩写,如下图所示,一共有4个HP口,HP口是AXI Slave设备,我们可以通过这4个HP接口实现高带宽的数据交互。
    2. 硬件环境搭建
    1)基于“ps_hello”工程,在vivado的界面中HP的配置如下图(HP0~HP3),这里面有使能控制,数据位宽选择,可选择32bit、64bit或128bit的位宽。我们的实验启用HP0配置为64bit位宽,使用的时钟是150Mhz,HP的带宽是150Mhz * 64bit,对于视频处理,ADC数据采集等应用都有足够的带宽。不需要AXI HPM0 LPD,取消选择。
    2)添加复位模块,用于复位
    3)在空白处右键选择”Creat Port”
    配置如图
    4)连接时钟和复位
    5)选中引脚,点击Make External,将信号导出
    并修改引脚名称如下图
    并选择总线同步时钟为axi_hp_clk
    6)点开Address Editor,如果发现地址没有分配,点击自动分配地址按钮
    分配后的结果,可以看到访问DDR, QSPI, OCM的地址空间
    保存设计,重新Generate Ouput Product
    7)添加hdl文件
    点击Finish
    HDL层级关系更新结果
    3. PL端AXI Master
    AXI4相对复杂,但SOC开发者必须掌握,对于zynq的开发者,笔者建议能够在一些已有的模板代码基础上修改。AXI协议的具体内容可参考Xilinx UG761 AXI Reference Guide。在这里我们简单了解一下。
    AXI4所采用的是一种READY,VALID握手通信机制,即主从模块进行数据通信前,先根据操作对各所用到的数据、地址通道进行握手。主要操作包括传输发送者A等到传输接受者B的READY信号后,A将数据与VALID信号同时发送给B,这是一种典型的握手机制。
    AXI总线分为五个通道:
    • 读地址通道,包含ARVALID, ARADDR, ARREADY信号;
    • 写地址通道,包含AWVALID,AWADDR, AWREADY信号;
    • 读数据通道,包含RVALID, RDATA, RREADY, RRESP信号;
    • 写数据通道,包含WVALID, WDATA,WSTRB, WREADY信号;
    • 写应答通道,包含BVALID, BRESP, BREADY信号;
    • 系统通道,包含:ACLK,ARESETN信号;
    其中ACLK为axi总线时钟,ARESETN是axi总线复位信号,低电平有效;读写数据与读写地址类信号宽度都为32bit;READY与VALID是对应的通道握手信号;WSTRB信号为1的bit对应WDATA有效数据字节,WSTRB宽度是32bit/8=4bit;BRESP与RRESP分别为写回应信号,读回应信号,宽度都为2bit,‘h0代表成功,其他为错误。
    读操作顺序为主与从进行读地址通道握手并传输地址内容,然后在读数据通道握手并传输所读内容以及读取操作的回应,时钟上升沿有效。如图所示:
    写操作顺序为主与从进行写地址通道握手并传输地址内容,然后在写数据通道握手并传输所读内容,最后再写回应通道握手,并传输写回应数据,时钟上升沿有效。如图所示:
    在我们不擅长写FPGA的一些代码时我们往往要借鉴别人的代码或者使用IP core。在这里笔者从github上找到一个AXI master的代码,地址是https://github.com/aquaxis/IPCORE/tree/master/aq_axi_vdma。这个工程是一个自己写的VDMA,里面包含了大量可参考的代码。笔者这里主要使用了aq_axi_master.v这个代码用于AXI master读写操作。借鉴别人代码有时会节省很多时间,但如果不能理解的去借鉴,出现问题了很难解决。具体可以参考aq_axi_master.v代码,有部分修改。
    4. ddr读写数据的检验
    有了AXI Master读写接口以后比较编写了一个简单的验证模块,这个验证模块是用来验证ddr ip的,通过写入数据,然后读取出来比较。这里要注意的是PS端DDR的起始地址和大小,还有地址的单位是byte还是word,AXI总线的地址单位是byte,测试模块的地址单位是word(这里的word不一定是4byte)。文件名mem_test.v。
    5. Vivado软件的调试技巧
    AXI读写验证模块只有一个error信号用于指示错误,如果有数据错误我们希望能更精确的信息,altera的quartus II软件中有signal tap工具,xilinx 的ISE中有chipscope工具,这些都是嵌入式逻辑分析仪,对我们调试有很大帮助,在vivado软件中调试更加方便。在插入调试信号时有些信息可能会被优化掉,或者信号名称改变了就不容易识别,这个时候我们可以在程序代码里加入*mark_debug="true"*这样的属性,如下图的信号:
    具体的添加方法在”PL的“Hello World”LED实验”中已经讲过,可参考。
    并在XDC文件里绑定error信号到PL端LED灯上。
    6. Vitis工程开发
    以hello world为模板新建vitis工程如下
    通过vitis下载程序后,系统会复位并且下载FPGA的bit文件。然后回到vivado界面点击Program and Debug栏自动连接目标如下图所示:
    自动连接硬件后可发现JTAG连上的设备,其中有一个hw_ila_1的设备,这个设备就是我们debug设备,选中后可点击上方黄色三角按钮捕捉波形。如果有些信号没有显示完整,可点击波形旁边的“+”按钮添加。
    点击捕获波形以后如下图所示,如果error一直为低,并且读写状态有变化,说明读写DDR数据正常,用户在这里可以自己查看其它的信号来观察写入DDR的数据和从DDR读出的数据。
    7. 本章小结
    zynq系统相对于单个FPGA或单个ARM要复杂很大,对开发者的基础知识要求较高,本章内容涉及到AXI协议、zynq的互联资源、vivado的和Vitis的调试技巧。这些都仅仅是基础知识,笔者在这里也仅仅是抛砖引玉,大家还是要多多练习,在不断练习中掌握技巧。

    回复

    使用道具 举报

    您需要登录后才可以回帖 注册/登录

    本版积分规则

    关闭

    站长推荐上一条 /1 下一条



    手机版|小黑屋|与非网

    GMT+8, 2025-1-27 12:12 , Processed in 0.106867 second(s), 15 queries , MemCache On.

    ICP经营许可证 苏B2-20140176  苏ICP备14012660号-2   苏州灵动帧格网络科技有限公司 版权所有.

    苏公网安备 32059002001037号

    Powered by Discuz! X3.4

    Copyright © 2001-2024, Tencent Cloud.