|
楼主 |
发表于 2008-10-22 18:46:31
|
显示全部楼层
回复:UTRA-UTRAN (LTE) and 3GPP (SAE)
Co-existence and Inter-working with 3GPP Radio Access Technology (RAT)
Co-existence in the same geographical area and co-location with GERAN/UTRAN on adjacent channels. E-UTRAN terminals supporting also UTRAN and/or GERAN operation should be able to support measurement of, and handover from and to, both 3GPP UTRAN and 3GPP GERAN.
- The interruption time during a handover of real-time services between E-UTRAN and UTRAN (or GERAN) should be less than 300 msec.
Architecture and migration
Single E-UTRAN architecture The E-UTRAN architecture shall be packet based, although provision should be made to support systems supporting real-time and conversational class traffic E-UTRAN architecture shall minimize the presence of "single points of failure" E-UTRAN architecture shall support an end-to-end QoS
- Backhaul communication protocols should be optimised
Radio Resource Management requirements
Enhanced support for end to end QoS Efficient support for transmission of higher layers
- Support of load sharing and policy management across different Radio Access Technologies
Complexity
Minimize the number of options
- No redundant mandatory features
As a consequence the WGs have dedicated normal meeting time to the Evolution activity, as well as separate ad hoc meetings.
RAN WG1 assessed six possible radio interface schemes (evaluations of these technologies against the requirements for the physical layer are collected in TR 25.814).
The wide set of options initially identified by the early LTE work was narrowed down, in December 2005, to a working assumption that the downlink would use Orthogonal Frequency Division Multiplexing (OFDM) and the uplink would use Single Carrier – Frequency Division Multiple Access (SC-FDMA). Although opinions were divided, it was eventually concluded that inter-Node-B macro-diversity would not be employed. More information is given in the report of RAN#30.
Supported downlink data-modulation schemes are QPSK, 16QAM, and 64QAM. The possible uplink data-modulation schemes are (pi/2-shift) BPSK, QPSK, 8PSK and 16QAM.
The use of Multiple Input Multiple Output (MIMO) scheme was agreed, with possibly up to four antennas at the mobile side, and four antennas at the Cell site.
Re-using the expertise from the UTRAN, the same channel coding type than for UTRAN was agreed (turbo codes).
RAN WG2 has also held a first meeting to approach the radio interface protocols of the Evolved UTRAN (link). The initial assumptions were:
Simplification of the protocol architecture and the actual protocols
- No dedicated channels, and hence a simplified MAC layer (without MAC-d entity)
- Avoiding similar functions between Radio and Core network.
A Transmission Time Interval (TTI) of 1ms was agreed (to reduce signalling overhead and improve efficiency).
RRC States were restricted to RRC_Idle and RRC_Connected States. They are depicted below, in conjunction with the possible legacy UTRAN RRC States (extract of TR 25.813):
RAN WG3 worked closely with SA WG2 in the definition of the new architecture:
The evolved UTRAN consists of eNBs, providing the evolved UTRA U-plane and C-plane protocol terminations towards the UE. The eNBs are interconnected with each other by means of the X2 interface. It is assumed that there always exist an X2 interface between the eNBs that need to communicate with each other, e.g. for support of handover of UEs in LTE_ACTIVE.
The eNBs are also connected by means of the S1 interface to the EPC (Evolved Packet Core). The S1 interface support a many-to-many relation between aGWs and eNBs.
E-UTRAN architecture (extract from TR 25.912):
Functional split:
The eNB host the following functions:
- Functions for Radio Resource Management: Radio Bearer Control, Radio Admission Control, Connection Mobility Control, Dynamic Resource Allocation (scheduling).
Mobility Management entity (MME):
- Distribution of paging messages to the eNBs.
User Plane Entity (UPE):
- IP Header Compression and encryption of user data streams;
- Termination of U-plane packets for paging reasons;
- Switching of U-plane for support of UE mobility.
This resulted, in conjuntion with work in RAN WG2, into the following protocol stack and the following function split (extract of TR 25.813):
The Study Item phase was concluded in September 2006. As expected, in particular the E-UTRA system will provide significantly higher data rates than Release 6 WCDMA. The increase in data rate is achieved especially through higher transmission bandwidth and support for MIMO.
In particular, the study showed that simultaneous support for UTRA and E-UTRA UEs in the same spectrum allocation was possible.
It became clear that the solutions chosen for the physical layer and layers 2/3 showed a convergence between paired spectrum and unpaired spectrum solutions for the Long Term Evolution (e.g. initial access, handover procedures, measurements, frame and slot structures).
At that point, the Work Item was created to introduce the E-UTRAN into the 3GPP Work Plan.
System Architecture EvolutionSA WG2 started its own Study for the System Architecture Evolution (SAE) whose objective is "to develop a framework for an evolution or migration of the 3GPP system to a higher-data-rate, lower-latency, packet-optimized system that supports, multiple RATs. The focus of this work [is] on the PS domain with the assumption that voice services are supported in this domain". SA2's SAE work is conducted under Work Item "3GPP system architectural evolution", approved in December 2004. It was initiated when it became clear that the future was clearly IP with everything (the "all-IP" network, AIPN - see TS 22.978), and that access to the 3GPP network would ultimately be not only via UTRAN or GERAN but by WiFi, WiMAX, or even wired technologies. Thus SEA has as its main objectives:
Impact on overall architecture resulting from RAN's LTE work Impact on overall architecture resulting from SA1's AIPN work
- Overall architectural aspects resulting from the need to support mobility between heterogeneous access networks
The figure below shows the evolved system architecture, possibly relying on different access technologies (extract of TR 23.882):
New reference points have been defined:
S1: It provides access to Evolved RAN radio resources for the transport of user plane and control plane traffic. The S1 reference point shall enable MME and UPE separation and also deployments of a combined MME and UPE solution.
S2a: It provides the user plane with related control and mobility support between a trusted non 3GPP IP access and the SAE Anchor.
S2b: It provides the user plane with related control and mobility support between ePDG and the SAE Anchor.
S3: It enables user and bearer information exchange for inter 3GPP access system mobility in idle and/or active state. It is based on Gn reference point as defined between SGSNs.
User data forwarding for inter 3GPP access system mobility in active state (FFS).
S4: It provides the user plane with related control and mobility support between GPRS Core and the 3GPP Anchor and is based on Gn reference point as defined between SGSN and GGSN.
S5a: It provides the user plane with related control and mobility support between MME/UPE and 3GPP anchor.
It is FFS whether a standardized S5a exists or whether MME/UPE and 3GPP anchor are combined into one entity.
S5b: It provides the user plane with related control and mobility support between 3GPP anchor and SAE anchor. It is FFS whether a standardized S5b exists or whether 3GPP anchor and SAE anchor are combined into one entity.
S6: It enables transfer of subscription and authentication data for authenticating/authorizing user access to the evolved system (AAA interface).
S7: It provides transfer of (QoS) policy and charging rules from PCRF to Policy and Charging Enforcement Point (PCEP).
The allocation of the PCEP is FFS.
SGi: It is the reference point between the Inter AS Anchor and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi and Wi functionalities and supports any 3GPP and non-3GPP access systems.
The interfaces between the SGSN in 2G/3G Core Network and the Evolved Packet Core (EPC) will be based on the GTP protocol. The interfaces between the SAE MME/UPE and the 2G/3G Core Network will be based on the GTP protocol.
Future plansThe LTE work should conclude at the September 2007 TSG plenary meetings. The conclusion of the SAE work (item) should follow.
* NGMN members: China Mobile Communications Corporation, KPN Mobile NV, NTT DoCoMo Inc., Orange SA, Sprint Nextel Corporation, T-Mobile International AG & Co KG and, Vodafone Group PLC. |
|