芯片实验室(Lab-on-a-chip)或称微全分析系统(Miniaturized Total Analysis System, µ-TAS)是指把生物和化学等领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基本集成一块几平方厘米的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术[1]。它是通过分析化学、微机电加工(MEMS)、计算机、电子学、材料科学与生物学、医学和工程学等交叉来实现化学分析检测即实现从试样处理到检测的整体微型化、自动化、集成化与便携化这一目标。最近的发展表明,90年代初由Manz[2]等人提出的以微电子加工技术为依托的芯片实验室的发展将会象四十年前微电子技术在信息科学的发展中引发一场革命一样,预计芯片实验室将在未来的发展中对分析科学乃至整个科学技术以及相关的产业界产生相似的作用。计算机芯片使计算微型化,而芯片实验室使实验室微型化,因此,在生物医学领域它可以使珍贵的生物样品和试剂消耗降低到微升甚至纳升级,而且分析速度成倍提高,成本成倍下降;在化学领域它可以使以前需要在一个大实验室花大量样品、试剂和很多时间才能完成的分析和合成,将在一块小的芯片上花很少量样品和试剂以很短的时间同时完成大量实验;在分析化学领域,它可以使以前大的分析仪器变成平方厘米尺寸规模的分析仪,将大大节约资源和能源。芯片实验室由于排污很少,所以也是一种“绿色”技术。中国SciEi.com.
二、 芯片实验室的发展历史与国内现状
芯片实验室或称微全分析系统是由瑞士Ciba-Geigy公司的Manz与Widmer[2]在1990年提出。他们最初的想法是发展一种可能作为一个化学分析所需的全部部件和操作集成在一起的微型器件,强调“微”与“全”。所以把µ-TAS看作是化学分析仪器的微型化。1993年Harrison和Manz等人在平板微芯片上实现了毛细管电泳与流动注射分析,借电渗流实现了混合荧光染料样品注入和成功电泳分离。但直到1997年这段时间里该领域的发展前景并不十分明朗。1994年始,美国橡树岭国家实验室Ramsey[3]在Manz的工作基础上发表了一系列论文,改进了芯片毛细管电泳的进样方法,提高了其性能与实用性,引起了更广泛的关注。在此形势之下,第一届Lab-on-a-chip or µTAS国际会议在荷兰Enchede举行,起到了推广微全分析系统的作用。1995年美国加州大学的Mathies等[4]在微流控芯片上实现了DNA等速测序,微流控芯片的商业开发价值开始显现,而此时微阵列型的生物芯片已进入实质性的商品开发阶段。同年9月,首家微流控芯片企业Caliper Technologies公司在美国成立。1996年Mathies[5]又将基因分析中有重要意义的聚合酶链反应(PCR)扩增与毛细管电泳集成在一起,展示了微全分析系统在生物医学研究方面的巨大潜力。与此同时,有关企业中的微流控芯片研究开发工作也加紧进行。1998年之后,专利之战日益激烈,一些微流控芯片开发企业纷纷与世界著名分析仪生产厂家合作,Agilent与Caliper联合利用各自的技术优势推出首台这方面的分析仪器Bioanalyzer2100及相应的分析芯片,其它几家厂商也于近年开始将其产品推向市场。据不完全统计,目前全世界已至少有30多个重要的实验室(包括MIT,Stanford大学、加州大学柏史莱分校、美国橡树岭国家实验室等)在从事这一领域的开发和研究。中国SciEi.com.