/*
* main.c
*/ #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Prototype statements for functions found within this file.
void InitEPwm1Example(void);
extern void InitSpwm(void); void main(void) {
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl(); // Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example // For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the DSP2833x_EPwm.c file
InitEPwm1Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable(); // Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// EALLOW; // This is needed to write to EALLOW protected registers
// PieVectTable.EPWM1_INT = &EPWM1_INT_ISR; // EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example // For this example, only initialize the ePWM EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS; InitEPwm1Example();
InitSpwm(); EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS; // Step 5. User specific code, enable interrupts: // Enable CPU INT3 which is connected to EPWM1-3 INT:
IER |= M_INT3; // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
PieCtrlRegs.PIEIER3.bit.INTx1 = 1; // Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM // Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{
__asm(" NOP");
} }
void InitEPwm1Example()
{
// Setup TBCLK
EPwm1Regs.TBPRD = 0xffff; // Set timer period 801 TBCLKs
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm1Regs.TBCTR = 0x0000; // Clear counter // Set Compare values
EPwm1Regs.CMPA.half.CMPA = 0x7fff; // Set compare A value
EPwm1Regs.CMPB = 0x7fff; // Set Compare B value // Setup counter mode
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV8; // Setup shadowing
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // Load on Zero
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set actions
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM1A on event A, up count
EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM1A on event A, down count
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; // Set PWM1B on event B, up count
EPwm1Regs.AQCTLB.bit.CBD = AQ_CLEAR; // Clear PWM1B on event B, down count // Interrupt where we will change the Compare Values
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTRU_CMPA; // Select INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event }
|