查看: 570|回复: 0

Loto实践干货(3) 测量CAN总线通讯数据

[复制链接]

该用户从未签到

发表于 2020-6-3 14:59:51 | 显示全部楼层 |阅读模式
分享到:
最近在做运动控制卡的项目,调试样机的过程中,需要验证CAN总线通讯功能的正确性。以前只限于理论上认识CAN总线,使用的CANbus的通讯卡也是有上位机例程,基本上简单地配置上位机软件就可以正常工作了。这次调试需要深入测试CAN接口的通讯过程,正好把之前的对CAN的认识再复习深化一下。

1.png

之所以采用CAN总线,是因为它只需要两根双绞线就可以连接多个通讯节点,并且可以传输相对远的距离,在工业现场抗干扰能力也很强。下图是我按照CAN总线的要求做的一条双绞线,黄色和绿色分别是CAN_High线和CAN_Low线。要求绞距20mm,不绞合的距离不超过50mm。

2.png

规定的双绞线传输距离与CAN总线的传输速率的关系如下表。我们的传输距离很短,所以可以采用很高的传输速率。即便是采用最高的传输速率,以OSC802示波器的25M带宽,也是足够调试用的。

表1.png
下图是我设计驱动控制板的CAN通讯接口部分的原理图,使用SN65HVD230收发器:
3.png
打样后的运动控制板是这样的:
4.png
使用LOTO的USB示波器OSC802对CAN通讯的信号进行捕捉,抓取数据进行解析判断。

5.jpg

使用USB示波器OSC802的单次触发功能,很轻松对CAN总线上的电平信号进行了捕捉。不过我们现在还看不懂它,需要对CAN的电平逻辑和传输协议有所了解。

没有收发信号时,两条导线上的电平相同(大约2.5V)。这种电平状态为隐形状态,也称之为隐性电平,即为逻辑1。有信号时,CAN_H导线的电平升高至少1V;而对应的CAN_L导线电平降低同样值,这种电平状态为显形状态,也称之为显性电平,即为逻辑0。5V和3.3V的CAN收发器的逻辑电平会稍有不同。

6.png

我们通过程序发出一串CAN数据后,用OSC802捕捉到的波形如下:

7.png
8.png

根据波形进行数据解码需要注意的有两点:
1:在CAN协议中将CAN_H和CAN_L的差值为高电平时定义为显性,逻辑上表示为0,为低电平时定义为隐性,逻辑上表示为1。
2:在CAN的协议中当连续出现5个显性时就需要插入一个隐性。

CAN的标准帧和扩展帧协议格式:
1.png

所以,波形数据解读为:

10.png

图中被红色斜线划掉的为CAN协议有意在5个连续显性后面加的单个隐性位,所以去掉。所以,通过USB 示波器 OSC802抓取到的数据为:

00000000000011000001001100010100000001010101011110011010001111100000111101111
表2.png

这个数据帧发出的数据为:
1010101111001101
0xAB, 0xCD
解析结果与上位机收发的结果互相验证正确,所以此次运动控制板的CAN接口功能调试成功完成。

11.png

回复

使用道具 举报

您需要登录后才可以回帖 注册/登录

本版积分规则

关闭

站长推荐上一条 /3 下一条



手机版|小黑屋|与非网

GMT+8, 2025-1-10 21:58 , Processed in 0.109986 second(s), 17 queries , MemCache On.

ICP经营许可证 苏B2-20140176  苏ICP备14012660号-2   苏州灵动帧格网络科技有限公司 版权所有.

苏公网安备 32059002001037号

Powered by Discuz! X3.4

Copyright © 2001-2024, Tencent Cloud.