当前的机器学习算法⼤致可以分为有监督的学习、⽆监督的学习和强化学习(Reinforcement Learning)等。强化学习和其他学习⽅法不同之处在于强化学习是智能系统从环境到⾏为映射的学习,以使奖励信号函数值最⼤。如果智能体的某个⾏为策略导致环境正的奖赏,那么智能体以后产⽣这个⾏为策略的趋势便会加强。强化学习是最接近于⾃然界动物学习的本质的⼀种学习范式。然⽽强化学习从提出到现在,也差不多有半个世纪左右,它的应⽤场景仍很有限,规模⼤⼀点的问题就会出现维数爆炸,难于计算,所以往往看到的例⼦都是相对简化的场景。 未来深度强化学习的发展必定是理论探索和应⽤实践的双链路持续深⼊。希望这本电⼦书能抛砖引⽟,给⼯业界和学术界带来⼀些输⼊,共同推进深度强化学习的更⼤发展。
|