表1列出了具有代表性的非压摆增强型、单通道、单位增益稳定VFA器件,它们同时提供低失调电压(≤1mV最大值)和较低的输入电压噪声(<4nV/√Hz)。后面的三个表格显示了通过不同的方法来提高压摆率。这些低噪声和偏置器件都是双极型的。因此,要想获得低的输出失调就需要在设计中使用偏置电流消除电路。如果能正确做到这些,就能减少由于Rf x Ios的输入偏置电流引起的输出DC误差。再次注意,最高速器件需要非RRO设计。此处显示的1SSBW增益通常超过真实的增益带宽积(GBP)。例如,最快的800MHz OPA820实际上显示了240MHz的数据手册GBP。这又是由于LG单位增益交越处的相位裕度<65°,大大增加了闭环带宽。
使用解补偿方法时压摆率通常较高,同时大多数器件也显示较低的输入电压噪声和失调电压。RRO或NRI器件相对较少,其中一个最新的器件(OPA838)还具有压摆增强输入级、极低功耗及低噪声。一般来说,这种器件提供极低的输入失调电流,允许使用输入偏置电流消除技术。SSBW x Gmin降序排列远超每个器件的实际GBP,因为最小工作闭环增益具有较低的相位裕度,扩大了最小建议闭环增益处的闭环带宽。Gmin是建议的最小增益。通常设置为达到安全的最小相位裕量,在30°~45°之间。Gmin通常会使非反相SSBW达到峰值,但不会不稳定。因此,“最小稳定增益”有点用词不当,“最小工作增益”更准确。使用简单的补偿技术,解补偿VFA可在任何增益(包括衰减)下进行反相操作。