查看: 721|回复: 0

[资料] 基于 FPGA 的神经形态电路板识别目标的效率比

[复制链接]

该用户从未签到

发表于 2019-6-26 13:22:24 | 显示全部楼层 |阅读模式
分享到:
BrainChip Holdings刚刚发布了一款PCIe服务器加速卡BrainChip Accelerator,该卡可以使用脉冲神经网络而不是卷积神经网络(CNN)同时处理多种视频格式的16路视频。 BrainChip加速卡采用 Xilinx Kintex UltraScale FPGA实现了6核处理单元的BrainChip的Spiking神经网络(SNN)处理器。

这是BrainChip加速卡的照片:
1.jpg
BrainChip Accelerator card with six SNNs instantiated in a Kintex UltraScale FPGA

每个BrainChip内核都执行快速的用户定义图像缩放,脉冲生成和SNN比较来识别目标。 SNN可以使用低至20x20像素的低分辨率图像进行训练。 根据BrainChip的说法,在BrainChip加速器内核中使用的SNN在低亮度,低分辨率和嘈杂的环境中擅长识别物体。
BrainChip加速器卡可以同时处理16路视频通道,每秒有效吞吐量超过600帧,而整个卡仅消耗15W。 根据BrainChip的数据,与基于CNN的深度学习GPUNetNet和AlexNet等神经网络相比,这个速度提高了7倍/秒/瓦。 这是BrainChip公司的一张图表,说明了这一说法:
2.jpg
SNN模仿人类大脑功能(突触连接,神经元阈值)比CNN更接近,并依靠基于尖峰时间和强度的模型。 这是BrainChip比较CNN模型和脉冲神经网络模型的图形:
3.jpg
回复

使用道具 举报

您需要登录后才可以回帖 注册/登录

本版积分规则

关闭

站长推荐上一条 /4 下一条

手机版|小黑屋|与非网

GMT+8, 2024-11-26 21:42 , Processed in 0.122892 second(s), 18 queries , MemCache On.

ICP经营许可证 苏B2-20140176  苏ICP备14012660号-2   苏州灵动帧格网络科技有限公司 版权所有.

苏公网安备 32059002001037号

Powered by Discuz! X3.4

Copyright © 2001-2024, Tencent Cloud.