TA的每日心情 | 奋斗 2015-10-5 14:38 |
---|
签到天数: 175 天 连续签到: 1 天 [LV.7]常住居民III
|
前几天拿到了一套飞思卡尔的开发套件,是万利电子出品的。做工很赞,很高大上。首先我从它的时钟系统入手。去官网下了个数据手册和参考手册下来。
主要是看数据手册的时钟模块。一看手册,真晕了,时钟系统好复杂。整个时钟系统由 MCG、OSC 和 RTC 几部分组成,此外还与 SIM 有关系,这是因为 SIM 控制了大多数模块的时钟门控。这个跟STM32也是类似的,要用到那个外设,先要把相应的时钟打开。
下面我自己用例程工程,配置了时钟,并且把总线时钟频率二分频输出到PTC3口上输出,如下图可以看出PTC3有个复用功能是时钟输出。
然后我从官网下载一些KL46 Demo板的源代码。然后就找到同一型号的芯片的例程。这个例程刚好满足的要求,用PTC3输出时钟,例程还有串口的程序,这部分用不到,我就注释了。我用了Keil v5.1的编译环境。大家注意的是从keil v5版本开始,芯片的支持包要用户选择下载。具体的方法如下:
把例程打开后:
我这里是用Jlink V8进行仿真和下载程序的,所以工程的配置还要设置一下才能用,方法如下:
成功仿真器连上板子的的仿真接口后会出现红框里的信息,仿真接口模式要选择SW模式。
接着就是配置flash
要想在PTC3口输出时钟还要做一下工作:
大家可以看到这里有个条件编译,要把这个参数填进去[url=]预定义方框[/url]才行,或者你可以直接将ENABLE_CLKOUT改为1,这样编译器就会编译这部分代码,在编译器预定义方框打开的步骤如图:
做完这些工作就可以编译工程和下载程序进行验证了:
主程序很简单,代码如下:
int main (void){ char ch; #ifdef CMSIS // If we are conforming to CMSIS, we need to call start here start();#endif printf("\n\rRunning the platinum project.\n\r"); while(1) { //ch = in_char(); //out_char(ch); } }首先程序会执行[url=]start();[/url]进行一些系统的初始化。
我们来看看start();的内部吧:
void start(void){ /* Disable the watchdog timer */ SIM_COPC = 0x00;#ifndef CMSIS // If conforming to CMSIS, we do not need to perform this code /* Copy any vector or data sections that need to be in RAM */ common_startup();#endif /* Perform clock initialization, default UART initialization, * initializes clock out function, and enables the abort button */ // common_startup(); sysinit(); printf("\n\r\n\r"); /* Determine the last cause(s) of reset */ outSRS(); /* Determine specific Kinetis L Family device and revision */ cpu_identify(); #ifndef CMSIS // If conforming to CMSIS, we do not need to perform this code /* Jump to main process */ main(); /* No actions to perform after this so wait forever */ while(1);#endif }最重要的是sysinit();函数,因为这个是初始化系统时钟的。源代码如下:/********************************************************************/void sysinit (void){ /* Enable all of the port clocks. These have to be enabled to configure * pin muxing options, so most code will need all of these on anyway. */ SIM_SCGC5 |= (SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK | SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK | SIM_SCGC5_PORTE_MASK ); // Release hold with ACKISO: Only has an effect if recovering from VLLS1, VLLS2, or VLLS3 // if ACKISO is set you must clear ackiso before calling pll_init // or pll init hangs waiting for OSC to initialize // if osc enabled in low power modes - enable it first before ack // if I/O needs to be maintained without glitches enable outputs and modules first before ack. if (PMC_REGSC & PMC_REGSC_ACKISO_MASK) PMC_REGSC |= PMC_REGSC_ACKISO_MASK; #ifdef ENABLE_CLKOUT // Initialize trace clk functionality clk_out_init();#endif#if defined(NO_PLL_INIT) mcg_clk_hz = 21000000; //FEI mode SIM_SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK; // clear PLLFLLSEL to select the FLL for this clock source uart0_clk_khz = (mcg_clk_hz / 1000); // the uart0 clock frequency will equal the FLL frequency #else /* Ramp up the system clock */ /* Set the system dividers */ /* NOTE: The PLL init will not configure the system clock dividers, * so they must be configured appropriately before calling the PLL * init function to ensure that clocks remain in valid ranges. */ SIM_CLKDIV1 = ( 0 | SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV4(1) ); /* Initialize PLL */ /* PLL will be the source for MCG CLKOUT so the core, system, and flash clocks are derived from it */ mcg_clk_hz = pll_init(CLK0_FREQ_HZ, /* CLKIN0 frequency */ LOW_POWER, /* Set the oscillator for low power mode */ CLK0_TYPE, /* Crystal or canned oscillator clock input */ PLL0_PRDIV, /* PLL predivider value */ PLL0_VDIV, /* PLL multiplier */ MCGOUT); /* Use the output from this PLL as the MCGOUT */ /* Check the value returned from pll_init() to make sure there wasn't an error */ if (mcg_clk_hz < 0x100) while(1); SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; // set PLLFLLSEL to select the PLL for this clock source uart0_clk_khz = ((mcg_clk_hz / 2) / 1000); // UART0 clock frequency will equal half the PLL frequency#endif /* * Use the value obtained from the pll_init function to define variables * for the core clock in kHz and also the peripheral clock. These * variables can be used by other functions that need awareness of the * system frequency. */ mcg_clk_khz = mcg_clk_hz / 1000; core_clk_khz = mcg_clk_khz / (((SIM_CLKDIV1 & SIM_CLKDIV1_OUTDIV1_MASK) >> 28)+ 1); periph_clk_khz = core_clk_khz / (((SIM_CLKDIV1 & SIM_CLKDIV1_OUTDIV4_MASK) >> 16)+ 1); /* Enable pin interrupt for the abort button - PTA4 */ /* This pin could also be used as the NMI interrupt, but since the NMI * is level sensitive each button press will cause multiple interrupts. * Using the GPIO interrupt instead means we can configure for an edge * sensitive interrupt instead = one interrupt per button press. */ enable_abort_button(); if (TERM_PORT_NUM == 0) { /* Enable the pins for the selected UART */#ifdef FREEDOM /* Enable the UART_TXD function on PTA1 */ PORTA_PCR1 = PORT_PCR_MUX(0x2); /* Enable the UART_TXD function on PTA2 */ PORTA_PCR2 = PORT_PCR_MUX(0x2);#endif#ifdef BACES /* Enable the UART_TXD function on PTA1 */ PORTA_PCR1 = PORT_PCR_MUX(0x2); /* Enable the UART_TXD function on PTA2 */ PORTA_PCR2 = PORT_PCR_MUX(0x2);#endif #ifdef FIREBIRD /* Enable the UART_TXD function on PTA1 */ PORTA_PCR1 = PORT_PCR_MUX(0x2); /* Enable the UART_TXD function on PTA2 */ PORTA_PCR2 = PORT_PCR_MUX(0x2);#endif #ifdef TOWER /* Enable the UART_TXD function on PTA14 */ PORTA_PCR14 = PORT_PCR_MUX(0x3); // UART0 is alt3 function for this pin /* Enable the UART_RXD function on PTA15 */ PORTA_PCR15 = PORT_PCR_MUX(0x3); // UART0 is alt3 function for this pin#endif SIM_SOPT2 |= SIM_SOPT2_UART0SRC(1); // select the PLLFLLCLK as UART0 clock source } if (TERM_PORT_NUM == 1) { /* Enable the UART_TXD function on PTC4 */ PORTC_PCR4 = PORT_PCR_MUX(0x3); // UART1 is alt3 function for this pin /* Enable the UART_RXD function on PTC3 */ PORTC_PCR3 = PORT_PCR_MUX(0x3); // UART1 is alt3 function for this pin } if (TERM_PORT_NUM == 2) { /* Enable the UART_TXD function on PTD3 */ PORTE_PCR16 = PORT_PCR_MUX(0x3); // UART2 is alt3 function for this pin /* Enable the UART_RXD function on PTD2 */ PORTE_PCR17 = PORT_PCR_MUX(0x3); // UART2 is alt3 function for this pin } /* UART0 is clocked asynchronously to the core clock, but all other UARTs are * clocked from the peripheral clock. So we have to determine which clock * to send to the UART_init function. */ if (TERM_PORT_NUM == 0) uart0_init (UART0_BASE_PTR, uart0_clk_khz, TERMINAL_BAUD); else if (TERM_PORT_NUM == 1) uart_init (UART1_BASE_PTR, periph_clk_khz, TERMINAL_BAUD); else if (TERM_PORT_NUM == 2) uart_init (UART2_BASE_PTR, periph_clk_khz, TERMINAL_BAUD); else while(1);}这里是打开所有GPIO的时钟,如下图的手册说明:
然后程序主要的部分是PLL配置了:
/* Initialize PLL */
/* PLL will be the source for MCG CLKOUT so the core, system, and flash clocks are derived from it */
mcg_clk_hz = [url=]pll_init[/url](CLK0_FREQ_HZ, /* CLKIN0 frequency */
LOW_POWER, /* Set the oscillator for low power mode */
CLK0_TYPE, /* Crystal or canned oscillator clock input */
PLL0_PRDIV, /* PLL predivider value */
PLL0_VDIV, /* PLL multiplier */
MCGOUT); /* Use the output from this PLL as the MCGOUT */
/* Check the value returned from pll_init() to make sure there wasn't an error */
if (mcg_clk_hz < 0x100)
while(1);
SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; // set PLLFLLSEL to select the PLL for this clock source
填进去pll_init函数里的几个参数,是可以改的,可以找到相应的头文件修改。
这里他的一些PLL参数如下图:
这个参数把时钟设到最大48M,这里用户可以根据自己的需求来修改。
剩下的就是其他功能模块的初始化了。
现在就下载程序下去进行验证了,下面附上测试图:
|
|