查看: 7987|回复: 0

[项目] Python+树莓派+YOLO打造一款人工智能相机

[复制链接]
  • TA的每日心情
    擦汗
    2018-10-18 15:28
  • 签到天数: 1 天

    连续签到: 1 天

    [LV.1]初来乍到

    发表于 2018-10-22 16:21:39 | 显示全部楼层 |阅读模式
    分享到:
    不久之前,亚马逊刚刚推出了DeepLens。这是一款专门面向开发人员的全球首个支持深度学习的摄像机,它所使用的机器学习算法不仅可以检测物体活动和面部表情,而且还可以检测类似弹吉他等复杂的活动。虽然DeepLens还未正式上市,但智能摄像机的概念已经诞生了。

    1.jpg

    今天,我们将自己动手打造出一款基于深度学习的照相机,当小鸟出现在摄像头画面中时,它将能检测到小鸟并自动进行拍照。最终成品所拍摄的画面如下所示:
    2.jpg

    相机不傻,它可以很机智

    我们不打算将一个深度学习模块整合到相机中,相反,我们准备将树莓派“挂钩”到摄像头上,然后通过WiFi来发送照片。本着“一切从简”(穷)为核心出发,我们今天只打算搞一个跟DeepLens类似的概念原型,感兴趣的同学可以自己动手尝试一下。

    接下来,我们将使用Python编写一个Web服务器,树莓派将使用这个Web服务器来向计算机发送照片,或进行行为推断和图像检测。

    3.jpg

    我们这里所使用的计算机其处理能力会更强,它会使用一种名叫YOLO的神经网络架构来检测输入的图像画面,并判断小鸟是否出现在了摄像头画面内。

    我们得先从YOLO架构开始,因为它是目前速度最快的检测模型之一。该模型专门给Tensorflow(谷歌基于DistBelief进行研发的第二代人工智能学习系统)留了一个接口,所以我们可以轻松地在不同的平台上安装和运行这个模型。友情提示,如果你使用的是我们本文所使用的迷你模型,你还可以用CPU来进行检测,而不只是依赖于价格昂贵的GPU。

    接下来回到我们的概念原型上… 如果像框内检测到了小鸟,那我们就保存图片并进行下一步分析。

    检测与拍照

    4.jpg

    正如我们所说的,DeepLens的拍照功能是整合在计算机里的,所以它可以直接使用板载计算能力来进行基准检测,并确定图像是否符合我们的标准。

    但是像树莓派这样的东西,我们其实并不需要使用它的计算能力来进行实时计算。因此,我们准备使用另一台计算机来推断出现在图像中的内容。

    我使用的是一台简单的Linux计算机,它带有一个摄像头以及WiFi无线网卡(树莓派3+摄像头),而这个简单的设备将作为我的深度学习机器并进行图像推断。对我来说,这是目前最理想的解决方案了,这不仅大大缩减了我的成本,而且还可以让我在台式机上完成所有的计算。

    当然了,如果你不想使用树莓派视频照相机的话,你也可以选择在树莓派上安装OpenCV 3来作为方案B,具体的安装方法请参考【这份文档】。友情提示,安装过程可谓是非常的麻烦!

    接下来,我们需要使用Flask来搭建Web服务器,这样我们就可以从摄像头那里获取图像了。这里我使用了MiguelGrinberg所开发的网络摄像头服务器代码(Flask视频流框架),并创建了一个简单的jpg终端:

    1. #!/usr/bin/envpython
    2. from import lib import import_module
    3. import os
    4. from flask import Flask, render_template, Response

    5. #uncomment below to use Raspberry Pi camera instead
    6. #from camera_pi import Camera

    7. #comment this out if you're not using USB webcam
    8. from camera_opencv import Camera

    9. app =Flask(__name__)

    10. @app.route('/')
    11. def index():
    12.     return "hello world!"

    13. def gen2(camera):
    14.     """Returns a single imageframe"""
    15.     frame = camera.get_frame()
    16.     yield frame

    17. @app.route('/image.jpg')
    18. def image():
    19.     """Returns a single currentimage for the webcam"""
    20.     return Response(gen2(Camera()),mimetype='image/jpeg')

    21. if __name__ == '__main__':
    22. app.run(host='0.0.0.0', threaded=True)
    复制代码


    如果你使用的是树莓派视频照相机,请确保没有注释掉上述代码中from camera_pi那一行,然后注释掉from camera_opencv那一行。

    你可以直接使用命令python3 app.py或gunicorn来运行服务器,这跟Miguel在文档中写的方法是一样的。如果我们使用了多台计算机来进行图像推断的话,我们还可以利用Miguel所开发的摄像头管理方案来管理摄像头以及计算线程。

    当我们启动了树莓派之后,首先需要根据IP地址来判断服务器是否正常工作,然后尝试通过Web浏览器来访问服务器。

    URL地址格式类似如下:

    1. http://192.168.1.4:5000/image.jpg
    复制代码

    在树莓派中加载Web页面及图像来确定服务器是否正常工作:
    5.jpg

    图像导入及推断

    既然我们已经设置好了终端来加载摄像头当前的图像内容,我们就可以构建一个脚本来捕捉图像并推断图像中的内容了。

    这里我们需要用到request库(一个优秀的Python库,用于从URL地址获取文件资源)以及Darkflow(YOLO模型基于Tensorflow的实现)。

    不幸的是,我们没办法使用pip之类的方法来安装Darkflow,所以我们需要克隆整个代码库,然后自己动手完成项目的构建和安装。安装好Darkflow项目之后,我们还需要下载一个YOLO模型。

    因为我使用的是速度比较慢的计算机和板载CPU(而不是速度较快的GPU),所以我选择使用YOLO v2迷你网络。当然了,它的功能肯定没有完整的YOLO v2模型的推断准确性高啦!

    配置完成之后,我们还需要在计算机中安装Pillow、numpy和OpenCV。最后,我们就可以彻底完成我们的代码,并进行图像检测了。

    最终的代码如下所示:

    1. from darkflow.net.build import TFNet
    2. import cv2

    3. from io import BytesIO
    4. import time
    5. import requests
    6. from PIL import Image
    7. import numpy as np

    8. options= {"model": "cfg/tiny-yolo-voc.cfg", "load":"bin/tiny-yolo-voc.weights", "threshold": 0.1}

    9. tfnet= TFNet(options)

    10. birdsSeen= 0
    11. def handleBird():
    12.     pass

    13. whileTrue:
    14.     r =requests.get('http://192.168.1.11:5000/image.jpg') # a bird yo
    15.     curr_img = Image.open(BytesIO(r.content))
    16.     curr_img_cv2 =cv2.cvtColor(np.array(curr_img), cv2.COLOR_RGB2BGR)

    17.     result = tfnet.return_predict(curr_img_cv2)
    18.     print(result)
    19.     for detection in result:
    20.         if detection['label'] == 'bird':
    21.             print("bird detected")
    22.             birdsSeen += 1
    23.             curr_img.save('birds/%i.jpg' %birdsSeen)
    24.     print('running again')
    25. time.sleep(4)
    复制代码
    此时,我们不仅可以在命令控制台中查看到树莓派所检测到的内容,而且我们还可以直接在硬盘中查看保存下来的小鸟照片。接下来,我们就可以使用YOLO来标记图片中的小鸟了。

    假阳性跟假阴性之间的平衡

    我们在代码的options字典中设置了一个threshold键,这个阈值代表的是我们用于检测图像的某种成功率。在测试过程中,我们将其设为了0.1,但是如此低的阈值会给我们带来是更高的假阳性以及误报率。更糟的是,我们所使用的迷你YOLO模型准确率跟完整的YOLO模型相比,差得太多了,但这也是需要考虑的一个平衡因素。

    降低阈值意味着我们可以得到更多的模型输出(照片),在我的测试环境中,我阈值设置的比较低,因为我想得到更多的小鸟照片,不过大家可以根据自己的需要来调整阈值参数。


    代码开源

    跟之前一样,我已经将所有的代码上传到GitHub上了,感兴趣的同学可以自行下载安装【GitHub传送门】。


    本文转载自FreeBuf


    回复

    使用道具 举报

    您需要登录后才可以回帖 注册/登录

    本版积分规则

    关闭

    站长推荐上一条 /4 下一条



    手机版|小黑屋|与非网

    GMT+8, 2024-11-19 03:41 , Processed in 0.120102 second(s), 18 queries , MemCache On.

    ICP经营许可证 苏B2-20140176  苏ICP备14012660号-2   苏州灵动帧格网络科技有限公司 版权所有.

    苏公网安备 32059002001037号

    Powered by Discuz! X3.4

    Copyright © 2001-2024, Tencent Cloud.